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Abstract

Modeling the Earth’s ionosphere is a critical component
of forecasting space weather, which in turn impacts radio
wave propagation, navigation and communication. This
research focuses specifically on predicting the electron
density in the topside of the ionosphere, using data col-
lected from the Defense Meteorological Satellite Program
(DMSP), a collection of 19 satellites that have been polar
orbiting the Earth for various lengths of times, fully cover-
ing 1982 to the present. An artificial neural network with
two hidden layers was developed and trained on two solar
cycles worth of data, including features such as time se-
ries F10.7, time series average interplanetary magnetic field
(IMF), time series Kp, solar azimuth, and location to gen-
erate an electron density prediction. We tested the model
on six years of subsequent data, and found a correlation
coefficient of 0.73 for a nowcast of electron density. Fig-
ure 1 depicts the predicted electron densities along with the
true densities measured by a DMSP satellite over a 5-hour
period. Upcoming work includes improved testing perfor-
mance via modified model inputs, tweaking the model ar-
chitecture, and further rounds of hyperparameter searching.
A forecast will then be computed by providing the now-
cast model with forecasted global inputs (solar wind, IMF,
geomagnetic indices) as part of a larger space weather fore-
casting effort currently underway. Therefore, we eventually
hope to better forecast the electron density of the Earth’s
ionosphere and in turn better predict space weather, mitigat-
ing its negative effects. In addition, these accuracy of these
results will be assessed with out-of-training DMSP satel-
lite data alongside the International Reference Ionosphere
(IRI).

1 Introduction

Space weather forecasting is of interest to both Earth and
space scientists as well as government and industry due
to the interaction of the sun with Earth’s atmosphere and
magnetic field, which can have potentially deleterious ef-
fects on Earth communication systems and power grids [1].
In this paper, we focus on ionospheric modeling as a crit-
ical component of such a forecasting system, and look to
improve upon the current standard empirical physics-based
model, the IRI [2]. Since many physics-based models often
make simplifying assumptions which decouple the interac-
tions between layers of the atmosphere/ionosphere, they are

Figure 1. 5-hour sample of model nowcasts of log10(Ne)
compared to actual log10(Ne) values reported by a DMSP
satellite along its path. The training mean electron density
was 1010.3 electrons/m3.

not as robust to sudden disturbances from high solar activity
[3]. Unfortunately, this means the models do not perform
well at the times we need accurate forecasts the most. Shim
et. al. [4] compares electron density models using RMS
error and prediction efficiency binned by latitude range and
true density variability. The study found the IRI to perform
better than other model types, including data assimilative
models and purely physics-based models. However, the
IRI does not perform well in predicting the electron den-
sity in the topside of the ionosphere, noted by both the de-
velopers of the IRI and validated by them and others via
comparison of IRI model output to topside electron den-
sity data taken from in-situ SWARM, DMSP, and CHAMP
measurements [5], [6], [7]. Therefore, development of a
standalone topside ionospheric electron density model us-
ing the data that proves the IRI does not perform well in
the topside would advance our overall ionospheric model-
ing capabilities. The DMSP alone has topside electron den-
sity data from 1988 to the present, making the modeling
problem a strong candidate for the application of machine
learning (ML) techniques. ML allows for model creation
with fewer assumptions, since the coupling to other por-
tions of the space weather system is empirically but very
generally defined, and it is easier for a model to predict
quiet times and storm times, and include nonlinear depen-
dencies. Therefore, we developed a neural network that is
trained on existing electron density data to create a model



that can nowcast the electron density at any location and
time, given the values of global indices F10.7, average IMF,
and Kp. In the paper, we outline the exact sources of data
used, the model architecture selected, and the feature se-
lection process, ending with a discussion of our results and
future improvements.

2 DMSP Data Source and Cleanup

When applying a machine learning technique to create pre-
dictions, data quality and preparation are of the utmost im-
portance. A model trained on poor data will not be a good
predictor of future behavior of a system, even with a so-
phisticated architecture. We accessed the DMSP dataset via
the CEDAR Madrigal Database. Although the DMSP has
been running since 1982, the first 7 satellites did not record
electron density data, so we restrict our focus to satellites 8
through 19 (a total of 12 satellites). As a result of this re-
striction, the earliest usable data are from 1988. After filter-
ing out any DMSP data points where the recorded electron
density was NaN, we examined the distribution of electron
densities obtained. The distribution of electron densities

Figure 2. Histogram showing distribution of log10(Ne)
with mean value subtracted out.

sampled along satellite paths of the DMSP appears to be a
normal distribution with a left tail skew as seen in Figure 2.
Earlier satellites clipped high electron density values, while
more recent satellites clipped lower electron density data in
Figure 3. In order to improve the integrity of the model, we
chose to limit our training and testing data electron densities
to be between 107 and 1011 electrons/m3. Given that there
were 12 satellites polar orbiting the Earth for anywhere
from 2-5 years each, it was unlikely that the data would
favor any specific locations apart from the poles, however;
we also verified that our expectation was met. Having more
coverage in the polar region is advantageous since the elec-
tron density in that region is far more variable than in the
mid-latitudes.

3 Model Architecture

When applying neural networks to a problem, there are
many types of nets to choose from. While the problem can

Figure 3. All log10(Ne) data from DMSP satellites with
mean value subtracted out. The mean log10(Ne) was around
10, so the values that were kept for training lie between -3
and 1 on this graph.

be thought of as a forecasting problem, the data available
make the problem non-traditional. Traditional forecasting
problems are often best solved by using Recurrent Neural
Networks (RNNs). Specifically, Long Short Term Mem-
ory (LSTM) networks are used to learn both long range and
short range patterns, or contexts, that occur within a system
[8]. However, these networks rely on perfect prior informa-
tion of the quantity being predicted over the entire spatial
model domain. For example, if an LSTM network were
to be used to predict the electron density at all coordinates
in the topside of the ionosphere, we would need access to
the prior electron density at all of those coordinates over a
variety of times, which we do not have, since the electron
density at altitudes above 300 km require in-situ measure-
ments. Instead, we have spatially sparsely sampled data
from the DMSP satellites, which provide the electron den-
sity at a new location every second as the satellite orbits the
Earth. Thus, for this forecasting model, we instead opted
to use a fully connected neural network, using location fea-
tures and global geomagnetic index values to provide the
neural network with a sense of time, as suggested in [9],
which focused on predicting global plasma density in the
magnetosphere.

4 Feature Selection

Since a solar cycle is 11 years long, it is logical to pick
a multiple of 11 years worth of data to train the neural net-
work on so that it can learn some of the long range drivers of
the electron density of the ionosphere. Therefore, the model
was trained on data from 1988 to 2009 inclusive, a total of
22 years, while data from 2010 to 2016 was used for valida-
tion. Input features to the neural network include location
(latitude, longitude, altitude, etc.), and global geomagnetic
indices relating to different latitudes of the topside iono-
sphere, which is a critical design choice. At the poles, the
ionosphere is impacted by the solar wind and the interplan-
etary magnetic field (IMF), and at mid-latitudes it is cou-
pled to the magnetic field. Therefore, the best combination



Figure 4. Model architecture used to predict ionospheric
electron density. The nine location features are sin/cos of
MLT, geographic latitude, sin/cos of geographic longitude,
altitude, sin/cos of solar azimuth, and L shell. The prior
index values used are daily F10.7 (7 days), 3 hour Kp (8
values), and hourly average IMF (24 hours).

of global indices requires experimentation. The IMF di-
rectly impacts the magnetosphere and plasmasphere, which
are coupled to the polar ionosphere. Kp, Sym-H, and DST
all encode information about perturbations of the Earth’s
magnetic field and are thus likely to provide information
about the mid-latitude ionosphere. F10.7 and sunspot num-
ber are indicators of the phase of the solar cycle. Past values
of these indices are readily available through NASA’s OM-
NIWeb Data Explorer. In order to pick the optimal set of
features, the 9 location features referenced in Figure 4 were
held constant, and 7 models were trained, each containing
one of the index features mentioned earlier. Whichever in-
dex feature produced the best correlation coefficient on test
set data was kept, and the next 6 possible models were
trained. This process was stopped once the addition of
a feature reduced the correlation coefficient in the testing
data. After empirically testing multiple combinations of in-
put features, we settled on using past values of IMF, Kp,
and F10.7, which cover the polar region, the mid-latitude
region, and the solar cycle respectively. These inputs were
used in the model architecture in Figure 4.

5 Results

As noted in Feature Selection, we chose to train on two full
solar cycles worth of data, or 22 years of data, and test the
model on the next 6 years of data, all from DMSP satel-
lites. Put another way, 80% of the data is used for training
and 20% for testing. On the data held out for testing, the
model predicts the electron density with an R score of 0.73
on testing data, as depicted by the Gaussian kernel density
plot seen in Figure 5. Further analysis shows that the model
performs better in the mid-latitude regions compared to the
polar regions, see the Gaussian kernel density plots in Fig-
ure 6. The correlation is clear, but the model may be further
refined, as discussed in Future Work.

Figure 5. Gaussian Kernel Density plot comparing real
electron densities from DMSP data and the electron den-
sities predicted by the model. Higher values (darker blue
color) indicate more points are in that box. Perfect predic-
tion is given by the dotted line.

6 Future Work

Improving the current nowcast ability may occur in a few
ways. Some logical improvements to the model include fur-
ther input parameter tuning. For example, the current model
uses the average IMF, but to improve electron density pre-
diction in the polar region, we can create a model with the
z-component of the IMF as a separate feature. Another way
to improve the polar region nowcasts would be to artificially
increase the amount of input data that comes from the po-
lar latitudes by inputting the same polar data point multi-
ple times into the dataset. Finally, there may be too much
time history of the indices, ultimately hurting model per-
formance. For example, instead of using the last full day
of average IMF, the last 12 or 6 hours might be enough to
make a better test prediction. Increased model complex-
ity often leads to overfitting to training data, so reducing
the number of inputs to this model is an area of ongoing
study. Eventually, forecasts of the input global indices will
be used to convert the nowcast into a forecast. Since the
current IRI model has difficulty modeling the topside of the
ionosphere, the IRI may be augmented with the ML model
developed and improved upon to advance ionospheric mod-
eling and space weather prediction.

7 Acknowledgments

This work has been supported by the Defense Advanced
Research Projects Agency (DARPA) through US Depart-
ment of the Interior award D19AC00009 to the Georgia In-
stitute of Technology. We acknowledge support through re-
search cyberinfrastructure resources and services provided
by the Partnership for an Advanced Computing Environ-
ment (PACE) at Georgia Tech.



(a)

(b)

(c)

Figure 6. Gaussian Kernel Density plots comparing real
electron densities from DMSP data and the electron den-
sities predicted by the model, binned by latitude. (a) is
latitudes greater than 60°N, (b) is latitudes between 60°N
and 60°S, and (c) is latitudes less than 60°S. Higher values
(darker blue color) on the graphs indicate more points are
in that box. Perfect prediction is given by the dotted line.
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