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Abstract

This work improves upon a previously developed neural
network modelling process that predicted waveguide pa-
rameters for the D-region ionosphere on two days [1]. The
previous model was limited by manually determining the
ideal set of transmitters (Tx) and receivers (Rx) and by
computation time. An automatic quality assessment tool
was developed to automatically evaluate the optimal net-
work for each day [2]. We also obtained a 14x improvement
in model training time by leveraging GPUs and improving
the parallelization of the training process. These advance-
ments allowed us to model 328 days across up to 21 paths.
With this larger sample size, we show the model is capable
of following expected seasonal trends. The model has also
been adapted to be used with nighttime data, and is showing
promising early results.

1 Introduction

The D-region ionosphere covers an altitude range (60-90
km) which is difficult to measure using conventional means.
For lower altitude measurements, it is possible to use high-
altitude balloons or aircraft to carry instrumentation; how-
ever, these methods do not extend high enough. Above
the D-region, it is possible to use satellites to provide di-
rect measurements, but atmospheric drag prevents satellites
from safely flying within the D-region. It is possible to use
sounding rockets to measure electron density, but they can
only provide a single vertical path over a short period of
time [3]. Due to the cost of a single flight and the lim-
ited coverage, it is prohibitively expensive to use sounding
rockets for large scale D-region measurements.

The use of very low frequency (VLF) waves to infer prop-
erties of the D-region ionosphere has been explored by
multiple previous studies [1], [4], [5]. Due to their fre-
quency, VLF waves experience almost total reflection from
the D-region. Combined with the Earth’s ground being re-
flective at VLF frequencies, this forms a spherical waveg-
uide, known as the Earth-Ionosphere Waveguide, which al-
lows VLF waves to propagate large distances around the
globe. As the waves propagate, they are affected by the
ionosphere’s properties at the reflection points.

Narrowband VLF transmitters are one source of VLF ra-
diation which can be used to make predictions about the

D-region along a transmitter-receiver path [4]. These pre-
dictions typically only use a small number of receivers,
and perform a search over a variety of electron density
profiles to select which profile best fits the measurements.
This technique is limited to small numbers of transmitter-
receiver paths due to searching through a large number
of profiles for each path. Recently, Gross developed a
method for modelling arbitrarily large transmitter-receiver
networks using machine learning techniques. Their work
provides a general framework for predicting a two parame-
ter model for electron density profiles, but was only applied
to two days [1].

This work leverages the machine learning modelling tech-
nique to predict the electron density profiles for 328 day-
time days and 1 nighttime day. By dramatically increas-
ing the number of predictions, we are able to understand
how the model responds to seasonal variations in the iono-
sphere. The model seeding process was improved to ac-
count for differences between days not seen in the original
paper. Additionally, the technique was extended to provide
initial results for nighttime predictions, a traditionally diffi-
cult period to estimate.

2 Dataset

In this work, we use data recorded by seven VLF/low fre-
quency (LF) AWESOME receivers located in the South-
Eastern United States (US) and Puerto Rico. The design of
the receiver is described in full by Cohen, et. al [6]. These
receivers monitor three Navy VLF transmitters, ranging in
frequency from 24.0-25.2 kHz, in the Northern US. The lo-
cations of the transmitters and receivers are shown in Figure
1. A significant limitation of the previous model was the
manual evaluation of which transmitters and receivers were
available on a given day. To resolve this, an automatic qual-
ity assessment tool was developed to determine the optimal
set of transmitters and receivers for all days in the dataset
[2]. This tool utilizes a set of heuristics to quickly deter-
mine whether there are any issues with the measurements,
such as transmitter or receiver downtime, high noise levels,
low signal levels, etc. We can now determine each day’s
ideal set of transmitters and receivers for the entire dataset
in a matter of hours with no manual intervention.

The amplitude and phase measurements are critical to pre-



Figure 1. A map of the transmitters and receivers used in
this work. The great circle paths are indicated by the lines
between receivers and transmitters.

dicting electron density (Ne), but they do not provide suf-
ficient information to train a machine learning model. In
order to train a model to predict Ne, a dataset containing
both an input, amplitude and phase of the VLF waves, and
the desired output, parameters describing Ne vs altitude, is
required. For this work, we used a two parameter model (h’
and β ) for Ne described by (1) [5].

Ne(h) = 1.43×1013e−0.15h′eβ (h−h′)m−3 (1)

Since large scale measurements of D-region ionosphere
Ne are currently impractical, an alternative method of ob-
taining training data was required. In a recent paper,
Gross described a technique for generating synthetic iono-
spheres [1]. By leveraging this technique, in combination
with a modelling software developed by the Navy called
long wave propagation capability (LWPC), we generated
200,000 training samples containing Bφ , average h’, and
average β for each transmitter-receiver path. The data gen-
eration process is illustrated in the leftmost dashed box in
Figure 2. To complete the nighttime models, we applied the
same technique to generate an additional 200,000 training
samples in representative h’ and β ranges. For the daytime
synthetic data, h’ and β ranged from 67-77 km and 0.35-
0.49 km-1 respectively. For the nighttime synthetic data, h’
and β ranged from 78-88 km and 0.58-0.72 km-1 respec-
tively. These ranges are based on Thomson’s D-region ob-
servation and modelling efforts [4], [7].

3 Model Training

Since each day has a potentially different set of available
transmitters and receivers, we train a separate model for
each network. While this increases the total training time
required, it does not require the model to be robust to miss-
ing input features. The problem of missing features is a
recognized problem in the field of machine learning, so de-
signing our methods to always have the entire feature set
is critical to a well functioning model [8]. To maximize
our efforts, networks which occurred more frequently were
prioritized during the training process. This prioritization
allows us to account for 50% of the total days with only
43 separate network configurations. Since there are 1028
unique network configurations, this is a significant reduc-
tion in required computational time.

During the training process we are using the synthetic
dataset described previously. Since the dataset does not
have any direct relationship to the real world, we introduce
a seed h’ and β (and the corresponding Bφ ) to use as a nor-
malization factor. In this work, the seed value is used to
make an assumption about the conditions of the ionosphere
at high noon, or the time at which the sun is most directly
overhead. Without knowing the high noon conditions, we
are unable to determine the best seed value prior to training
the model. Instead, we train an individual neural network
for each seed value and select the best performing seed on a
day by day basis. This seeding technique was first explored
by Gross [1]. As a consequence of the seeding process,
we also remove sources of consistent error such as receiver
gain or transmitter power varying between days. To im-
prove the computation time, multiple GPUs were used in
parallel to reduce the training time from approximately 14
days to approximately 24 hours. The entire model training
process can be seen in Figure 2. To extend this technique to
nighttime predictions, we replace the high noon seed with
a similar midnight seed corresponding to the point at which
the sun was least overhead. This allows us to utilize the
same daytime modelling process, only changing the train-
ing data and range of seed values.

4 Optimal Seed Selection

For a given day, we know both the number of available
paths, N, and the duration of the prediction in seconds, K.
To remain consistent with the notation used by Gross, we

Figure 2. Block diagram describing the model training process.



will denote the output of LWPC given an input h’, β as
L(h′,β ). Here, LWPC is used to convert the model’s pre-
dicted h’ and β into a usable magnetic flux density. To
determine the optimal seed, we first define the seed error
as the RMSE of all the predictions, (2). The seed error is
then used to determine how well or poorly that seed’s model
performed.
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The seed error must be computed for each seed on a given
day. We expect that seeds close together should result
in similar model performance since that represents only a
small change in reference value. For most days, this is
the case; however, on certain days, we see an isolated well
performing seed which indicates the model for that seed is
likely over fitting and producing non-realistic values. This
effect can be seen in Figure 3, where the red circles indi-
cate the minimum seed error before and after a 3x3 median
filter was applied. In the cases without an isolated seed,
the 3x3 median filter does not have a drastic effect on the
optimal seed. Therefore, it is safe to select the seed which
corresponds with the lowest seed error after the 3x3 median
filter is applied as the optimal seed for that day.

Figure 3. Plot of seed error with the red circles indicating
the global minimum. The left plot shows an isolated global
minimum which likely represents non-realistic predictions
that overfit to the data. A 3x3 median filter was applied to
remove the isolated minimum.

5 Results

5.1 Daytime Seasonal Averages

To better understand the model’s performance, h’ and β

were predicted for 328 days. Due to shorter days and lower
levels of ionizing radiation during the winter, we expect the
h’ value, which estimates ionosphere height, to be higher.
The model predictions were averaged seasonally for the
NAA-DA path to illustrate that the model is predicting these
trends as shown in Figure 4. NAA-DA was selected be-
cause it was the most frequently available path in the 328
days used, but similar trends can be seen on other paths not

shown here. While the model may make some mistakes, the
agreement between the model’s seasonal averages and our
expectations indicates we can trust the model’s predictions
in aggregate. In addition to showing the seasonal shift, Fig-
ure 4 also illustrates that, on average, the model predicts a
mostly parabolic curve for both h’ and β . This agrees with
the expectation that h’ reaches a minimum at high noon and
increases away from that point and vice versa for β . By ver-
ifying the model’s daytime predictions agree with known
trends, we can be confident that the model is making rea-
sonable predictions. This work demonstrates the first large
scale application of using synthetic ionosphere data to train
machine learning models for the D-region ionosphere.

Figure 4. Plot demonstrating the seasonal variation in
model predictions for NAA-DA. The increase in h’ dur-
ing the winter and fall align with our expectations of iono-
spheric seasonal variation.

5.2 Nighttime Predictions

During the night, the ionosphere moves up in altitude. The
reduction in solar radiation makes the D-region ionosphere
more chaotic during the night. These two factors make pre-
dicting electron density from VLF waves a difficult prob-
lem. In this work, we present nighttime h’ and β predic-
tions for July 16, 2017. As seen in Figure 5, the range of h’
values are reasonable; however, we see some unexpectedly
large values for β during the second half of the night. While
these are only early results, they indicate the model is likely
better able to predict the height of the D-region ionosphere
compared to the rate Ne changes with altitude.

Figure 5. Nighttime predictions for three paths on July 16,
2017. The h’ predictions show reasonable values that are
within our expectations. The β values extend above what
we expect to be reasonable beginning shortly after 6 UT.



6 Discussion and Conclusion

Previous work on predicting D-region Ne has often been
limited to a few days and a limited number of transmitter-
receiver paths [1], [4]. Additionally, traditional VLF re-
mote sensing is susceptible to calibration errors and terrain
artifacts [4], [9], [10]. By normalizing to the noon-time
value, we improve the model’s robustness to these effects.
In this work, we demonstrated the use of a machine learn-
ing model for predicting waveguide parameters of the D-
region ionosphere across 328 days and up to 21 paths. We
show the model’s agreement with expected seasonal varia-
tions indicating the model is capable of coping with a range
of ionospheric conditions. The daytime modelling tech-
nique was also expanded to work for nighttime conditions.
Since nighttime data is lacking a high noon reference value,
we instead shift to using midnight as a reference value, al-
though other options may be explored in the future. By only
changing the reference time, we can apply the same tech-
nique to both daytime and nighttime measurements, greatly
simplifying the overall model. Initial results from the night-
time predictions indicate the model is able to predict rea-
sonable values for h’ with some unexpected behavior in
β predictions. Predictions during nighttime conditions are
traditionally more difficult and less well understood, so it is
reasonable for the model to struggle in this regime.

As the duration of predictions increases, transmitter phase
drift may become an issue as this is not accounted for
through the high noon seed. Fortunately, polarization is
invariant to the absolute transmitter phase which may al-
low us to circumvent the problem. With this large dataset,
it may now be possible to compare single day measure-
ments to a quiet day case to detect events such as gravity
and acoustic waves. While not shown here, model predic-
tions during Hurricane Irma hint at this being possible in the
near future. By transitioning to a four parameter Ne profile
and smaller spatial features in the training data, the model
will likely be better equipped to handle some of the smaller
perturbations during these gravity and acoustic waves [11].
As a by product, this may also improve the model’s perfor-
mance during the more chaotic nighttime environment.
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