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Abstract

We consider the problem of tracking vehicles in a
distributed setting, which is important for, e.g., au-
tonomous driving and collision avoidance systems.
These applications rely on receiving timely updates
and require aggregating sensor data from many sources
to improve accuracy. We consider a cloud-assisted
scheme that utilizes replication to alleviate the strag-
gler problem, i.e., the problem of random delays in
distributed systems. We derive the age-of-information
(AoI) of estimate updates and show that replication
signi�cantly improves the AoI. Furthermore, we derive
the probability that the error of the position estimate
exceeds some threshold for a given AoI.

1 Introduction

Accurately tracking position is critical for many appli-
cations in intelligent transportation systems. In many
cases these applications rely on receiving timely up-
dates to operate safely, as is the case for, e.g., au-
tonomous driving and collision avoidance systems [1],
and require merging sensor data from multiple sources
to improve accuracy [2]. In several recent works timeli-
ness is measured by the probability distribution of the
age-of-information (AoI) [3], de�ned as the di�erence
between the current time, t, and the largest generation
time of a received update, U(t), i.e., the AoI is t−U(t).

Several distributed tracking systems have been pro-
posed in the literature (see, e.g., [2, 4] and references
therein). These systems may both allow several nodes
in a network to reach consensus on an estimate and
improve accuracy by merging sensor data from multi-
ple sources. One way is to rely on servers in the cloud
for aggregation. However, the AoI may be very high
in such systems, leading to low tracking accuracy [5].
One of the reasons is the problem of straggling servers,
i.e., servers that experience transient delays due to,
e.g., network congestion. For example, the 99-th per-
centile response time of individual servers may be sev-
eral times higher than the average [6].

In [5], the authors introduced a coded distributed
tracking scheme, which alleviates the straggler problem

by introducing redundancy. The scheme in [5] relies on
maximum distance separable codes and replication to
recover from transient delays. It is shown that this
can signi�cantly improve tracking accuracy compared
to the corresponding uncoded scheme.

In this paper, we consider the problem of tracking the
position of multiple vehicles over time in a distributed
setting, where each vehicle may observe a subset of the
other vehicles. In particular, we consider a special case
of the distributed tracking scheme of [5], using repli-
cation only, applied to this problem. For this scenario
we answer the following two questions:

1. What is the probability distribution of the AoI of
updates available to the vehicles?

2. What is the probability distribution of the posi-
tion estimate error for a given AoI?

We answer the �rst question by deriving the proba-
bility of missing a given number of consecutive dis-
crete update steps as a function of the update rate,
the replication factor, and a parameter β characteriz-
ing the length of the transient delays (Theorem 1). We
answer the second question by deriving the cumulative
distribution function (CDF) of the estimate error of
the position as a function of the estimate covariance
matrix (Theorem 2), which can be computed numeri-
cally for a given AoI.

2 System Model

We consider the problem of tracking a set ofNv vehicles
V = {v1, . . . , vNv} in a distributed setting. As in [2],
we model the state of each vehicle by a length-4 vector
composed of its position and speed in the longitudi-
nal and latitudinal directions. We model the overall
system as a stochastic process that evolves over time
according to

xt = Fxt−1 + qt,

where xt is the concatenation of the state vectors of all
vehicles, i.e., xt is of length 4Nv, F is the matrix rep-
resenting the state transition model, and qt is a noise



Figure 1. Cloud-assisted tracking of Nv = 3 vehicles.
Each vehicle uploads sensor data to Nw = 2 workers
responsible for aggregation and estimation.

vector drawn from a zero-mean Gaussian distribution
with covariance matrix Q. The estimate is updated in
discrete time increments of length ∆t. We measure ac-
curacy by the absolute distance between the estimated
and true position of each vehicle (see Section 3.2).

At each time step t, each of the Nv vehicles obtain a
noisy partial observation of its own state and that of a
subset of the other vehicles. The observation made by
vehicle v at time t is represented by the vector

z
(v)
t = H(v)xt + r

(v)
t ,

where H(v) is a matrix of size h(v) × 4Nv representing

the observation model of vehicle v and r
(v)
t is a noise

vector drawn from a zero-mean Gaussian distribution
with covariance matrix R(v). We assume that the ma-
trices F , Q, H(v), and R(v) are known.

2.1 Distributed Tracking

To improve accuracy the observations made by the Nv

vehicles are sent to a central party, composed of Nw

severs, referred to as workers, W = {w1, . . . , wNw},
responsible for computing an aggregated estimate of
xt, denoted by x̂t. Each vehicle v sends the observation

z
(v)
t to the central party at the start of each time step

and the updated estimate x̂t is sent back to the vehicles
at the end of each time step, where it is used, e.g., to
generate collision warning messages for obstacles out
of line of sight. We depict the system in Fig. 1.

2.2 Probabilistic Runtime Model

We assume that workers become unavailable for a ran-
dom time after completing a computing task, which is
captured by the exponential random variable V with
probability density function (PDF) and CDF [7]

fV (v) =

{
1
β e−

v
β v ≥ 0

0 v < 0
and FV (v) = 1− e

−v
β ,

respectively, where β is used to scale the tail of the
distribution, which accounts for transient disturbances

that are at the root of the straggler problem. We refer
to β as the straggling parameter.

For j independent and identically distributed random
variables V1, . . . , Vj , denote by Vi:j the i-th order statis-
tic, i.e., the random variable associated with the i-th
largest value out of V1, . . . , Vj . When V1, . . . , Vj are
exponential random variables Vi:j is a Gamma random
variable [8]. We denote by fVi:j (vi:j) and FVi:j (vi:j) the
PDF and CDF of Vi:j , respectively.

2.3 Kalman Filter

Denote by x̃t the prediction of the state at time step t
based on the state estimate x̂t−1 at time step t−1 and
the state transition matrix F , i.e., x̃t = F x̂t−1, and by
P̃t = FPt−1F

T+Q the covariance matrix of the error
x̃t − xt, where (·)T denotes matrix transposition and
Pt−1 is the covariance matrix of the error x̂t−1−xt−1

at time step t − 1. The Kalman �lter is an algorithm
for combining the predicted state x̃t with an obser-

vation z
(v)
t = H(v)xt + r

(v)
t to produce an updated

state estimate x̂′t with minimum mean squared er-

ror [9]. Let ỹ
(v)
t = z

(v)
t −H(v)x̃t and denote by S

(v)
t =

R + H(v)P̃t
(
H(v)

)T
its covariance matrix. Then, the

updated state estimate is x̂′t = x̃t + K
(v)
t ỹ

(v)
t , where

K
(v)
t = P̃t

(
H(v)

)T (
S

(v)
t

)−1

is the Kalman gain that

determines how the observation should in�uence the
updated estimate. The covariance matrix of the error

x̂′t − xt is P ′t =
(
I −K

(v)
t H(v)

)
P̃t, where I is the

identity matrix. If more than one observation is avail-
able, the estimate can be improved by setting x̃t ← x̂′t
and P̃t ← P ′t and repeating this procedure. After re-
peating this procedure for all observations, the �nal
estimate x̂t and its corresponding error covariance ma-
trix Pt is obtained.

3 Resilient Distributed Tracking

In this section, we introduce and analyze the dis-
tributed tracking scheme, which is a special case of
the scheme in [5]. The key idea is to replicate all ob-
servations over the Nw workers so that all workers have
access to all observations at the start of each time step,
which makes the system resilient against stragglers.
Each worker computes the estimate x̂t by �rst com-
puting the prediction x̃t and then combining it with

the received observations {z(v)
t : v ∈ V} one by one as

explained in Section 2.3. The �rst worker to compute
x̃t shares it with the vehicles and the other workers.
Hence, if at least one worker becomes available within
a given time step all vehicles and workers have access
to an updated estimate at the start of the next time
step. If no workers become available during time step
t, each vehicle computes x̃t locally and we let x̂t = x̃t.



The next worker to become available may apply the
Kalman �lter several times consecutively to catch up.

In the following, we give the probability of the vehicles
receiving no update for i consecutive time steps and the
probability distribution of the position estimate error.

3.1 Analysis of the AoI

Because the updated estimate is shared with the vehi-
cles at the end of each time step, the AoI at the start
of time step t is ∆t if at least one worker became avail-
able during time step t − 1. On the other hand, if no
workers have become available for i consecutive time
steps the AoI is (i+ 1)∆t. Here, we give the probabil-
ity that no workers become available for i consecutive
time steps.

Theorem 1. Let G∆t be the random variable asso-
ciated with the number of unique workers that become
available in the time interval from t to t+∆t, for some
t. Then, Pr(G∆t = Nw) = FVNw:Nw

(t) and, for i < Nw,

Pr(G∆t = i) =∫ ∆t

0

fVi:Nw
(vi:Nw)

(
1− FV1:Nw−i(t− vi:Nw)

)
dvi:Nw ,

where fVi:Nw
(FV1:Nw−i) is the PDF (CDF) of Vi:Nw

(V1:Nw−i) (see Section 2.2).

The probability of no workers becoming available for i
consecutive time steps is Pr(G∆t = 0)i.

3.2 Analysis of the Position Error

We consider the absolute error of the position estimate.

Denote by E
(v)
x,t and E

(v)
y,t the random variables associ-

ated with the error of the estimate of the position in the
longitudinal and latitudinal directions, respectively, for

vehicle v at time t. Furthermore, denote by P
(v)
x,y,t the

covariance matrix of the random vector [E
(v)
x,t E

(v)
y,t ]T.

The covariance matrix can be computed numerically
from the Kalman �lter equations in Section 2.3. With
some abuse of notation, we drop subscript t. Now, let

E
(v)
d =

√(
E

(v)
x

)2

+
(
E

(v)
y

)2

be the random variable associated with the absolute
distance between the estimated and true position of
vehicle v. We have the following results.

Lemma 1. The probability distribution of
(
E

(v)
d

)2

is

equal to that of the sum λ1C1 + λ2C2, where C1 and
C2 are independent Chi-squared random variables, both
with one degree of freedom, and λ1 and λ2 are the

eigenvalues of P
(v)
x,y .
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Figure 2. The probability of missing an update as a
function of the straggling parameter β when ∆t = 0.1s
and 1 ≤ Nw ≤ 5.

Theorem 2. The CDF of E
(v)
d is

F
E

(v)
d

(
e

(v)
d

)
= Pr

(
E

(v)
d ≤ e(v)

d

)
=

∫ (
e
(v)
d

)2

0

fC1

(
c1
λ1

)
FC2


(
e

(v)
d

)2

− c1
λ2

dc1,

where fC1
(FC2

) is the PDF (CDF) of C1 (C2).

4 Numerical Results

In this section, we plot the probability of missing an
update, i.e., Pr(G∆t = 0) (see Theorem 1), and the

complementary CDF of E
(v)
d (see Theorem 2) for a

particular vehicle tracking scenario.

In Fig. 2, we plot Pr(Gt = 0) as a function of the
straggling parameter β when ∆t = 0.1 seconds (s) for
1 ≤ Nw ≤ 5 workers. Increasing the number of work-
ers, and thus the replication factor, signi�cantly re-
duces the chance of missing an update. For example,
when β = 0.1 a replication factor of two (Nw = 2)
decreases the probability of missing an update from
about 0.37 for the scheme with no replication (Nw = 1)
to about 0.13, thus reducing the AoI. More generally,
increasing the replication factor by one lowers the prob-
ability of missing an update by about two thirds when
β = 0.1.

In Fig. 3, we consider the vehicle tracking scenario
of [2, 5], where at each time step each vehicle ob-
serves its absolute position (via, e.g., GPS) and the
relative position of a subset of the other vehicles (via,
e.g., RADAR or LIDAR). Because relative position can
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Figure 3. The complementary CDF of the position

error E
(v1)
d for vehicle v1 when there are Nv = 10 vehi-

cles, each of which can observe 3 other vehicles (see [5]
for details), and ∆t = 0.1s.

be measured much more accurately than absolute po-
sition (typically centimeter-level compared to meter-
level accuracy), combining observations of relative and
absolute positions from multiple sources can signi�-
cantly improve accuracy. We consider a scenario with
Nv = 10 vehicles, each of which can observe three of
the other vehicles. Matrices F , H(v), Q, and R(v) are
generated as in [5].

We compute the steady state covariance matrix P∞ =
limt→∞Pt numerically by repeatedly applying the
Kalman �lter equations (see Section 2.3) until conver-
gence. Note that P∞ is a function of the statistical
properties of the system and is independent of the ac-

tual observations z
(v)
t . Next, for i ≥ 1, denote by

P∞,i =

{
P∞ i = 1

FP∞,i−1F
T + Q i > 1

the covariance matrix associated with an AoI of i∆t.
We extract the covariance matrix of the position es-
timate for vehicle v1 from P∞,i. Finally, we compute
the complementary CDF of the absolute position error

for vehicle v1, i.e., 1− F
E

(v1)

d

(
e

(v1)
d

)
, which we plot in

Fig. 3 for ∆t = 0.1s.

The AoI may signi�cantly a�ect the accuracy of the
estimate, especially at the tail. For example, the mean

error, E
(
E

(v1)
d

)
, for an AoI of ∆t = 0.1s is 0.19 me-

ters (m), whereas the 90-th and 99-th percentile error
is about 0.35m and 0.50m, respectively. For an AoI
of 10∆t the mean, 90-th, and 99-th percentile error is
about 50% higher at 0.28m, 0.52m, and 0.73m, respec-
tively, compared to for an AoI of ∆t.

5 Conclusion

We considered a distributed vehicle tracking scheme
that utilizes replication to alleviate the straggler prob-
lem. For this scheme we characterized the AoI of up-
dates available to the vehicles, which depends on the
number of workers and a parameter (β) that captures
the amount of time that workers become unavailable
after completing a task. Replication can signi�cantly
reduce the chance of missing an update, thus improv-
ing the AoI and accuracy. For example, when β = 0.1,
replication lowers the chance of missing an update from
about 0.37 for no replication to about 0.13 when using
one replica. Finally, we derived the probability that
the error of the estimate of the position exceeds some
threshold for a given AoI.
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