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Abstract

This paper proposes a Gaussian processes-based modeling
technique for handling multi-output (frequency-dependent
vector-valued) microwave systems, in which variable-
fidelity data is available. This approach assumes that each
frequency point has its own mean and covariance, which are
independent of the ones of other frequencies, and a unique
correlation matrix describes the full frequency range. Using
these assumptions can significantly reduce the number of
matrix calculations required by the maximum likelihood es-
timation of the data. The notable advantage of this proposed
approach is the capability of modeling systems with multi-
output responses without requiring any pre-conditioning of
the data while keeping a high accuracy, which is especially
useful in the microwave design. The proposed methodol-
ogy is demonstrated for a parameterized PCB connector
design and compared against usual surrogate modeling ap-
proaches.

1 Introduction

The design of microwave components based on full-wave
electromagnetic (EM) simulations is a well-established ap-
proach due to trustful calculations that these methods can
achieve. However, in many cases, such as optimization [1]
or statistical analysis [2], the computational costs required
tend to exceed the available capability when direct meth-
ods, e.g., Monte Carlo analysis, are used.

Surrogate modeling is a way to mitigate this problem since
once this model is created with a certain amount of infor-
mation of the original simulation, it can be evaluated many
times at a low cost and reasonable accuracy when compared
to the full-wave EM simulation [1], [4]. In recent years,
some surrogate modeling approaches have been employing
variable-fidelity ( also called multi-fidelity) data, i.e., both
high and low-fidelity, in order to speed up the modeling pro-
cess, while maintaining the accuracy [3].

Although these modeling methods do speed up EM simula-
tions in some cases, they are often not truly suitable for the
design of microwave systems. Usually, microwave compo-
nents outputs are vectors in a frequency range, e.g., the |Sy1]|
parameter of a structure. Nevertheless, the usual surrogate
approaches consider these outputs as a set of scalars, which
make them efficient only for systems with a low number of
input variables and reduced size of modeling data [4], [5].
The most direct procedure to solve this problem is to in-

corporate the extra dimension, e.g., the frequency, in the
design variables and adapt the vector-output into a scalar-
output to construct a conventional surrogate. Another way
is to build a model for each frequency point of the output
and estimate each desired scalar with a different model [6].
The drawback of these methods is that they can be still too
expensive to be evaluated depending on the size of the vec-
tor output. Recently, some progress has been made in the
surrogate modeling based on Gaussian processes (GPs), in
which the construction of a correlation matrix that relates
each frequency point of the output allows a more correct
prediction of systems with vector-valued outputs [7]. How-
ever, this method still requires a considerable number of
matrix inversions, which does not make it any more com-
putationally efficient. An alternative approach convolves
the GPs with different kernels in order to create multiple
outputs and adds a cross-correlation among them, reducing
the computational costs in some cases [8].

In this paper, we propose an approach based on GPs to deal
with vector-valued output microwave systems, for which
both high and low-fidelity data are available. By consid-
ering that a unique correlation matrix describes each point
of the vector-valued output and that each of these points has
a unique mean and covariance, the number of matrix calcu-
lations required by the maximum likelihood estimation of
the data can be extremely reduced, without significantly af-
fecting the accuracy of the model. Our approach and its
efficiency are demonstrated using a PCB connector operat-
ing at 12-18 GHz, whose training data are computed with
CST MWS [9].

2 Vector-Output Variable-fidelity Modeling

In this section, we formulate the proposed vector-output
surrogate technique by modifying the usual Co-Kriging
model, a variable-fidelity Gaussian process-based approach
[3]. Co-Kriging is a multi-level adaption of the Kriging
method, which exploits both high-fidelity model (HFM)
and low-fidelity model (LFM) to enhance the accuracy of
the surrogate model and reduce its construction time [5].
A big drawback of this method, is that it can only model
functions, whose outputs are scalars. However, often in
the microwave design, we want to model a function, w.r.t.
the HFM, f, := x — y, : R* = R/, with k,/ € N, where
x is the input and y, is the vector-output, whose obser-
vations of a cheaper function, i.e., responses of a LFM,
feix—y,: RF = R/ with input x,. and vector-output y,



are available. Here k is the number of design input pa-
rameters and [ the size of the vector output. The sam-
pling data, i.e., the observed data, of f, is described as

X, = {x&l)’ . ’xgnf)}T and
yell yelz ycil
yél) yﬁz) yiz)
Yo =] : . (1)
iyl v

Each row of the matrix Y, represents a vector-valued output
of the function f, e.g., the |S1;| parameter of a microwave
system with / frequency points in the frequency range ®; to
; Hz. Note that, the same data arrangement is valid for the
cheapdata X, and Y.
In order to deal with this case, we must modify the usual
Co-Kriging approach, resulting in the proposed algebraic
vectorial (AV) Co-Kriging. The first step of this adaption is
to consider both functions’ observations as realizations of
Gaussian Processes Y77 (X,) ~ A (e, Ze), Y47 (X ) ~
N (Ue,Ze), 1.€., vectors of random variables, where (t and &
represent the mean and covariance matrix of the respectives
GPs. The model’s construction starts by defining a GP for
the difference data as

Y] () =7 (x) - p¥?7 (x), @
where p € R is the scaling parameter that dictates the dif-
ference between coarse and expensive data. From this point
on, we describe the expensive data using the cheap and dif-
ference data, ie., Y, :=Y,—pY..
Then, we compute the correlation of the data and organize
this information in a matrix, called correlation matrix W.
Note that, there are different ways to define the structure
of this correlation matrix given the data arrangement within
matrices Y ; and Y .. We propose considering each columns
of both matrices y,; andy,;, i=1,---,[ as random vectors
(RV)s of Gaussian variables, and assume two conditions for
these RVs:

1. Unique correlation matrices ¥, and W, describes all
RVs separately (for each different and cheap data)

2. There exist single (i, Gd2 and . and o for each RV
and they are independent from the ones of other RVs

In proposition two, 62 means the variance of the respec-
tively RV. In a practical example, we are saying that a geom-
etry input parameter should affect the response of |S;| in
two different frequencies @; and @; for 7, j=1,--- ,/ in sim-
ilar ways and that these responses |S11|o=e; and [Si1|w=0;
are not correlated. This may appear contradictory, however,
these conditions do alleviate the matrix calculations, while
affecting the accuracy insignificantly, as it will be shown in
this section and the illustration design example in Section
3.

After assuming these conditions, we calculate the correla-
tion of the cheap and difference data separately and build

with this information the correlation matrices ¥, € R"*"%

and W, € R"*", The correlation between any two ele-
ments of the rows i,h = 1,--- ,n. of the cheap output ma-
trix, for example, is calculated with the function

3)
Note that two parameters, namely 6. € R and p. € R
control the shape of this function. Naturally, there are many
possible values, which one can use for these parameters.
However, we should calculate the values that most probably
would describe the original sampling data the best. For this
task we take use of the Maximum Likelihood Estimation
(MLE). The usual MLE, however, considers the output of
a function as a scalar. Therefore, we propose an average
MLE such that the best parameters for an output matrix as
Y. can be found by maximizing the modified concentrated
log-likelihood of the cheap data
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where the vector 67 = (62,---,63) is calculated by ex-
tracting the diagonal elements of:
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For the difference data, we compute the following
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where we calculate 6‘5 and p,; with (5) and (6) using
the difference data and correlation matrix. These two
MLE:s result in the estimated values of the five parameters
0.,pc,04,pg4, and p, with which we can compute the ex-
tended correlation matrices C;, i = 1, - - , I, correlating both
high and low-fidelity data for each RV with
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The notation ¥.(X.,X,), for example, means the matrix
of correlations constructed with the parameters of the cheap
data, correlating expensive and cheap data.
Mind that, even though we construct [/ different C matri-
ces, the most expensive part of it, i.e., computing the inner
correlation matrices, is done only once. This means, per-
forming only two MLE:s to find the unique parameters 6.,
Pes 04, pg and p that characterize W, and W, keeps the
number of matrix calculations low. This is the main prop-
erty that makes the AV Co-Kriging a fast and suitable tool
for modeling vector-valued output systems.
Finally, we maximize the likelihood of the RV's with respect



Table 1. Modeling error and time for four different cases

| Number of point samples Method Training + Testing Error
vector samples etho .
(expensive/cheap) Time [s] (NRMSE)
Kriging 102.30 31.36%
Casel| S CoKrigng 25804 31.50% |
5/15 AV Co-Kriging 200.07 11.26%
Kriging 111.49 19.78%
Case2| oL CoKrigng 37682 1975%
10/30 AV Co-Kriging 125.85 8.76%
Kriging 134.31 18.21%
Cased | e CoKriging 59265 20.14% _|
20/50 AV Co-Kriging 206.55 6.92%
Kriging 182.54 13.34%
Cased | R CoKriging 9141 1201%
40/105 AV Co-Kriging 164.08 6.62%

to the predicted output, given the whole data and the esti-
mated parameters. This is done in an element-wise way,
since we have a C; for each RV, resulting in the AV Co-
Kriging predictor

Pei(X) = i+l C7 (y; — 1), )

where each ¢; is the correlation vector between the pre-
dicted point J.;(x) and the expensive and cheap data for
)
chi'Vc(wa)

each RV
ci = (A . . ) . (10)
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After concatenation, (9) results in the vector-valued output
Vo := {Fe1,9e2, -+ ,Je1}. The elements of the vector fl =
{fu, -, [y} are calculated with (6) using both data instead
of only the cheap output matrix.

Note that, since we are using the average MLE for each
data shown in (4) and (7), the (9) is not equal to applying
the usual scalar Co-Kriging / times in a simple element-
wise way. Here, we make use of single ¥, and ¥, for the
whole vector-valued output, which can alleviate the matrix
calculations tremendously, especially for a high number of
sample points / per vector output.

3 Application Example

The proposed multi-output variable-fidelity approach is
demonstrated for the design of a PCB connector shown in
Fig. 1. This system connects two PCBs with FR4 sub-
strate & = 4.4, h = 0.32mm, 6 = 0.02. The chosen de-
sign variables are x = [s1,h1,71,72]. Our goal is to build
a surrogate model of the connector’s |S;| parameter in
the frequency band from 12 to 18 GHz. In this case, the
|S11] is a vector of 20 points in the frequency dimension.
The lower and upper bounds for the design parameters are
Xiow = [2,1,0.2,1.1] and x,, = [6,2.5,0.5,2.5], measured

in mm. We perform two sets of finite element (FE) simu-
lations, in order to compute the training data of the surro-
gate model. The first is the HFM with a high discretization
factor (= 80000 tetrahedra) and the second an LFM with a
coarser discretization (= 30000 tetrahedra) of the geometry
shown in Fig. 1. The benchmark of the proposed technique
is made against the usual Kriging and Co-Kriging method-
ologies [3]. For these usual approaches, we consider the
frequency as a design parameter. Therefore, these tech-
niques are modeling a function with five input parameters,
namely x* = [s1,h1,r1,r2, ®], while AV Co-Kriging esti-
mates a vector-valued function, which has four inputs, i.e.,
the original x = [sy,/y,r1,r2]. This means that for the AV
Co-Kriging the training information is made of vectors that
come directly from the FE solver, and for Kriging and Co-
Kriging the training samples are points, which are extracted
from the vectors of the FE solver. The comparison between
the methods is done for four different cases, in which we
train each model with an increasing number of expensive
and cheap samples, as shown in Table 1. Naturally, the
Kriging model will use only the expensive data, while the
other techniques use both data. Note that, for each case, we
write the total number of training points and vectors. For
instance, 15 cheap vector samples for the AV Co-Kriging
mean 300 cheap points samples for both Kriging and Co-
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Figure 1. Geometry of the PCB connector
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Figure 2. The responses of two geometries of the PCB
connector: FE references (-) and (- -), and AV Co-Kriging
(e) and (x) respectively.

Kriging since each vector output has 20 points. The nor-
malized root mean square (NRMSE) of each approach is
calculated for every situation using extra 10 vector sam-
ples, i.e., 200 points, which were not used for the training
of the model. The time required by each model to perform
training, i.e., the MLE calculations using a genetic algo-
rithm, which is limited to be 200 seconds, and testing has
been also calculated. These two comparison parameters are
shown in Table 1. The results show an accuracy advantage
of the proposed AV Co-Kriging in all cases over Kriging
and Co-Kriging, since the fast parameter estimation inside
the AV Co-Kriging overcome the estimation of the other
methods. Note that, the usual Co-Kriging has the highest
NRMSE, even when compared to the Kriging. This is due
to the insufficient training time, which is especially harm-
ful to this method. Considering bigger sets of training data,
as in the last case, the proposed AV technique is the fastest
one, since high-dimensional matrices become too arduous
for the usual methods. Fig. 2 shows two testing vectors of
the FE reference, used to calculate the NRMSE, together
with their correspondent AV Co-Kriging predictions of the
last case of Table 1, as means of visualization of the model’s
accuracy.

4 Conclusion

A methodology to build fast and accurate surrogate mod-
els of vector-valued outputs, for which both high- and
low-fidelity data are available, is proposed. In order to
demonstrate the functionality of the proposed approach, the
frequency-dependent |S;;| parameter, i.e., a vector output,
of a PCB connector is modeled. The estimation proved to
be more accurate and in some cases faster than conventional
modeling techniques when applied to this microwave com-
ponent design.
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