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Abstract

We study the performance of the Perfectly Matched
Layer (PML) boundary technique within a Finite Integra-
tion/Finite Differences method for the simulation of elec-
tromagnetic waves in structures with rotational symmetry.
To solve the stability issues of PML in time-domain which
have been reported in literature, we have previously in-
troduced a hybrid implicit-explicit algorithm. It applies a
stabilizing implicit update scheme for components within
the PML region only, but reduces to the standard explicit
leapfrog method in the main computational domain. For a
so-called 2.5-D grid in ρz-coordinates, this algorithm is ex-
tended to the PML in the ρ-direction, and its stability and
accuracy properties are analyzed. The results show that the
radial ρ-PML has less influence on the stability of the time
integration compared to the longitudinal z-PML. Thus, it
can be operated using the same parameters as longitudinal
PML or even using standard leapfrog integration.

1 Introduction

Many simulations require absorbing boundary conditions,
for example, the analysis of antennas or radiating compo-
nents in microwave technology or optics. The Perfectly
Matched Layer (PML) technique is the most common ma-
terial based open boundary condition. It was first intro-
duced in 1996 by J.-P. Bérenger [1] and is characterized
by a frequency-independent formulation. This is especially
useful for broadband time-domain simulations. The PML
boundary features additional material layers at the bound-
ary of the computational domain, which are filled with arti-
ficial conductivities (κ and σ ) with a specific spatial profile.
In the commonly applied anisotropic setup, the transver-
sal conductivities are responsible for the absorption of in-
cident waves, and the normal components provide the re-
quired impedance matching. There exist several different
approaches for the implementation of this PML concept in-
cluding its time discretization and the corresponding inte-
gration formulas.
However, it has been reported in literature [2, 3] that some
of the implementation variants of the well-known leapfrog
update method – the key idea of the FDTD method, ap-
plied to PML – can have stability problems. The occurring
instabilities only weekly depend on the Courant criterion
and can typically not be avoided simply by reducing the

time step width. In a previous publication [4] we have al-
ready shown that the discretization of the time axis itself,
regarding the additional PML equations, has an impact on
the dynamic behavior of different time integration schemes
and thus on the problems with stability. To obtain more de-
grees of freedom to influence the stability, a hybrid implicit-
explicit algorithm has been introduced in [5]. The time in-
tegration follows the explicit leapfrog-like update equations
for all components in the main computation area, whereas
an implicit scheme is used inside the PML region.

In this paper, this scheme is applied to the absorbing PML
boundary in the radial direction of a cylindrical computa-
tional grid. As a simple evaluation example, we analyze a
hollow structure, where cylindrical waves are excited by a
current source at its center and allowed to propagate in ra-
dial direction. This allows us not only to test the stability
of the PML implementation but also to measure the practi-
cally reached reflectivity of the PML. The simulation is per-
formed in Time Domain using the Finite Integration Tech-
nique (FIT) applied to a cylindrical grid, with the so-called
Body of Revolution ansatz [6].

2 Basic Principles

2.1 Standard Leapfrog and PML

A staggered grid is used for the spatial discretization of
the Finite Integration Technique (FIT) [6]. The resulting
matrix-vector formulation consists of grid voltages _e and
_
h, diagonal material matrices Mµ and Mε , and the curl ma-
trix C, resp. FIT allows using the leapfrog time integration
scheme
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Herein, the electric and magnetic degrees of freedom are
sampled on full and half-time steps, respectively. The time
derivatives are substituted by finite difference expressions
with a time step width ∆t. These equations are compu-
tationally equivalent to corresponding FDTD schemes, in-
cluding the well-known proofs for conditional stability [6]
(without PML).

The performance of the PML can be measured using the
remaining (parasitical) reflection of outgoing waves, and is



typically controlled by two parameters: First, the number
Nlay of additional grid layers defines the additional effort
invested in the boundary condition. In combination with
the longitudinal grid step width (constant within the PML
and adopted from the last step width in the main domain), it
defines the physical length provided by the PML to absorb
the outgoing waves. Within this additional domain, the ar-
tificial conductivities follow a predefined profile which is
quadratic in all our experiments. The slope of this profile
is adjusted from some analytic considerations [1] to reach a
certain maximum reflection R which constitutes the second
control parameter.

Note that all those parameters have originally been defined
based on plane waves in a Cartesian setup. In the cylin-
drical coordinates used here, with non-constant metric co-
efficients and cylindrical waves crossing a curved interface
between the main domain and PML, it is no longer guar-
anteed that the standard choice of parameters is somehow
optimal. Additionally, the achievable reflection in practi-
cal computations depends on the angle of incidence of the
waves, which also leads to poor performance (up to the to-
tal loss of the wave absorption property) for guided waves
close to cut-off. Finally, the spatial resolution of the grid
has some influence.

Concerning the additional memory requirements of the
PML, the computational area is increased by Nlay ·Nz grid
points for a ρ-PML. Since Nr � Nlay usually applies, the
relative increase in grid points is not too large. For a stan-
dard PML update, both Φ and Ψ need to store an old

_
h and

_e vector inside the PML. The additional effort is therefore
manageable.

2.2 Hybrid Time Update with ρ-PML

To obtain additional parameters to control the stability, an
implicit algorithm in the PML region is used. Combining
this with an explicit algorithm in the rest of the computa-
tional domain yields the hybrid implicit-explicit algorithm
presented in [5] for a PML in the z-direction. In the case
of a PML in ρ-direction, the deviation is analogous. The
implicit method is obtained by substituting the electric grid
voltages _e in (1), by using the Newmark-beta ansatz [7]

_en ≈ β
_en+1 +

(
1
2
−2β+γ

)
_en +

(
1
2
+β−γ

)
_en−1. (3)

The introduced parameters β ∈ [0,1] and γ ∈ [0,1] allow the
weighting of different time instances (β ) and a switch from
forward and backward time stepping (γ). Herein, an im-
plicit update with equations for electric and magnetic grid
voltage is derived. Both voltages are necessary because the
PML needs to access both values [8, 9]. Furthermore, for
a hybrid update, β and γ are transformed to the diagonal
matrices Dβ and Dγ , where every grid edge can be assigned
a specific value. For a more detailed explanation we re-
fer to [5] which shows the analog procedure for a PML in

z-direction. The hybrid implicit-explicit update for a face
PML in ρ direction is given by
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with the abbreviations
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I is the identity matrix, and the additional degrees of free-
dom Φ and Ψ correspond to the integrals of the electric
and magnetic grid voltages over the simulated time, respec-
tively. The diagonal matrices Mσn , Mσt1 , Mκn and Mκt1
contain the artificial material of the PML. Normal compo-
nents carry the index n and are here the z-components. Tan-
gential components have the index t1 and are in this case
the ρ and φ components. For β = 0 and γ = 0.5 the update
reduces to the ordinary Leapfrog scheme. Regarding the
memory requirements in comparison to the standard PML,
there are only two additional

_
h and _e vectors (at previous

time steps) to store within the PML region. Additionally,
the inversion of the Matrix A has do be performed once. As
the matrix is sparse and diagonal, an efficient LU factoriza-
tion usually is available.

3 Numerical Evaluation

We analyze an empty circular structure that is open in ρ di-
rection. Its height is h = 2m, and it is terminated by perfect
electric conducting (PEC) walls in the ±z-direction and a
PML in ρ-direction at a = 30m, see Figure 1. The hy-
brid implicit-explicit time-domain update is performed on
a cylindrical grid using the body of revolution ansatz on a
2.5-D grid. The excitation is realized by a current source
in the center of the cavity and only has a single non-zero



z-component. It is driven by a sinus modulated Gaussian
pulse with bandwidth 74MHz ≤ f ≤ 184MHz. This will
excite cylindrical waves propagating in ρ-direction. Note
that the longitudinal PEC boundaries lead to a waveguide-
like propagation characteristic with a mixture of different
modes, most of them with a typical cut-off behavior.
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Figure 1. Sketch of the circular structure with PML in ρ-
direction.

3.1 Stability Chart

To evaluate the stability of the hybrid algorithm, the pa-
rameters β and γ are systematically varied within the PML
region, while a standard leapfrog procedure is used in the
remaining region. As already shown in [5], the implicit al-
gorithm is always unstable for γ < 0.5, corresponding to a
forward time-stepping scheme. Therefore β and γ are var-
ied in the range of 0.5 ≤ γ ≤ 1 and 0 ≤ β ≤ 1. Here, a
PML with 12 layers and reflectivity of R = 10−4 (as target
values) is used. The abort criterion is set to the maximum
number of iterations of 500,000. In all stable simulations,
the energy of the simulation already reached the numeri-
cal noise level, before the maximum of iterations. In Fig-
ure 2 the resulting stability chart is depicted. For compar-
ison with the longitudinal z-PML, the stability graph for a
PML in z-direction, with 3 layers and R = 10−2 from the
previous publication [5] is repeated in Figure 3. The com-
puted example was a hollow circular waveguide with PML
in the propagation direction.

Figure 2. Stability chart for the local Newmark-beta pa-
rameters β and γ for a ρ-PML with 6 layers and R = 10−4.
A darker color depicts a higher number of stable time steps.

As expected, the simulation is unstable for some parame-
ter values, characterized in the chart by the lighter colors
and separated from the stable area by a white line. In con-
trast to the previous results for the longitudinal PML, we
can now state that for the radial PML the ’leapfrog point’

Figure 3. Stability chart for the local Newmark-beta pa-
rameters β and γ for a z-PML with 3 layers and R = 10−2.
The model problem is a circular hollow waveguide with
PML in propagation direction, from [5].A darker color de-
picts a higher number of stable time steps.

lies clearly within the stable region. Furthermore, only the
unstable region of the ρ-PML (for γ > 0.5 and small β ) is
similar to the one of the z-PML, whereas the other unstable
parameter sets from the z-PML do not cause stability prob-
lems for the ρ PML. This suggests that the ρ-PML causes
significantly fewer problems of instability than the z-PML,
especially concerning to the standard Leapfrog method.

3.2 Reflection coefficient

In the following, the reflection coefficient R and its depen-
dence on the PML parameters is investigated. Different val-
ues for the number Nlay of PML layers and the target value
for the reflectivity R are tested, and the Newmark-beta pa-
rameters β and γ are varied in the range of 0 ≤ β ≤ 1 and
0.5≤ γ ≤ 1. The reflection factor is determined by record-
ing the fields at a point in the computational area with a
field probe, see Figure 1. Based on the length in radial di-
rection, a distinction between incoming and reflected pulse
is possible. These two pulses are separately Fourier trans-
formed, and the reflection factor R is defined as the ratio
of their amplitudes at the frequency f = 100MHz in some
distance to the cutoff frequency of the first and the second
mode.
In Figure 4 and Figure 5 the computed reflection coefficient
R is shown for different β and γ , with R = 10−4. Figure 4
shows the result for 6 and Figure 5 for 12 layers of PML.
In case of an unstable simulation, no reflection coefficient
is computed.

Both results show, that there exists some influence of β

and γ on the PML performance which, however, is hard to
predict in advance. In none of the setups the requested re-
flected reflectivity is achieved in the real simulation. This
is probably caused by a combination of different effects, in-
cluding the dispersion characteristics and cut-off phenom-
ena of the involved radiation modes, the neglected metric
expressions in the PML coefficients, and the limited grid
resolution in both tangential and normal direction. Nev-
ertheless, the simulation with 12 layers of PML achieves
slightly lower values for the reflection R.
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Figure 4. Reflection R for 6 PML layers and R = 10−4

coefficient for different β ∈ [0,1] and γ ∈ [0.5,1].
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Figure 5. Reflection R for 12 PML layers and R = 10−4

coefficient for different β ∈ [0,1] and γ ∈ [0.5,1].

To compare the influence of the reflection coefficient R in
dependence of the number on PML layers, the reflection is
recorded for 12, 6 and 3 layers with γ = 0.5. In Figure 6
the reflection R is shown in dependence of β for different
numbers of layers, with R = 10−4 (solid graph) and R =
10−2 (dashed graph).
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Figure 6. Reflection R for different amount of PML layers,
dependent on β with γ = 0.5. The solid graph corresponds
to R = 10−4 and the dashed graph to R = 10−2.

It can be seen that the reflection factor R improves with an
increasing number of PML layers.

4 Conclusion

We analyzed a hybrid implicit-explicit time domain scheme
with a radial PML with respect to its stability properties, the
measured reflection at the boundary, and the computational
cost. A circular structure with an absorbing boundary con-
dition in the ρ-direction served as an example. Compared
to the PML in the z-direction, the PML in the ρ-direction

has fewer unstable zones in the stability graph. The existing
unstable areas are almost congruent with parts of the unsta-
ble areas of the z-PML. Additionally, the Leapfrog update
scheme is no longer in an unstable area. Thus, the ρ-PML
has fewer problems with unstable behavior than the z-PML,
and the parameter sets from z-PML can be used in both
cases (and probably also in combinations of both.) Fur-
thermore, it can be stated that the reflection at the boundary
condition is influenced by the parameters β and γ of the im-
plicit method. As expected, a larger number of PML layers
improve its absorbing behavior, where, however, the target
values are not reached for the given waveguide-like setup
with its typical cut-off effects. Although the implicit cal-
culation within the ρ-PML seems to be not mandatory for
a stable time integration, it remains an interesting option,
since no deterioration of the reflection values are observed.
This makes the hybrid scheme a promising candidate for
the important case of a combination of both PML bound-
aries, where the source of any instabilities will be harder to
detect and to assign to a specific region of the grid.
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