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Abstract

The exact analytical solution to the problem of scattering
of an oblique electromagnetic wave by a metal cylinder in
a cold resonant magnetoplasma is found. It is shown that a
quasi-electrostatic wave, which wavelength is much smaller
than the radius of cylinder, is scattered mostly in the for-
ward direction in terms of energy.

1 Introduction

A problem of scattering of electromagnetic waves by metal
objects in magnetoplasmas has a long history [1–4]. In re-
cent decades, interest in this problem has increased due to
detection of oblique waves onboard spacecraft in the near-
Earth plasma: the correct calculation of the wave electric
field values from the voltage data is sometimes challenging
because of the intense re-radiation [5–7].

In this paper, the exact analytical solution to the problem
of scattering of an oblique electromagnetic wave by a metal
cylinder parallel to the ambient magnetic field in a cold res-
onant magnetoplasma is found. It is valid for an arbitrary
(but permissible by the plasma dispersion properties) wave
normal angle. Much attention is paid to the case when this
angle is close to the resonance cone angle.

2 Geometry of the Problem and Plasma Dis-
persion Properties

We consider a plane monochromatic wave scattered by a
perfectly conducting circular infinitely long cylinder of ra-
dius a parallel to the ambient magnetic field in a cold col-
lisionless magnetoplasma (see Figure 1) with the dielectric
tensor

ε̂̂ε̂ε =

ε −ig 0
ig ε 0
0 0 η

 (1)
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Here, ωc and ωp are the electron cyclotron and plasma fre-
quencies, respectively. In what follows, we limit ourselves

to the resonant frequency range

ωc/2 < ω < ωc� ωp. (2)

In this range, ε > 0, η < 0, and the corresponding wave
normal surface is confined to the resonance cone direction
and does not include inflection points (see Figure 2).

3 Incident Wave

The incident wave is described by the angle θi between z-
axis and its wavevector ki that belongs to (x,z)-plane (see
Figure 1). This angle specifies the phase propagation di-
rection for the incident wave and, because of the disper-
sion properties in range (2), can be varied in range 0 ≤
θi < θres≡ arctan

√
|η/ε|. The corresponding wavenumber

ki ≡ |ki| is determined from θi using the dispersion relation:(
ki

k0

)2
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2εη +(ε2−g2− εη)sin2
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2(ε sin2
θi +η cos2 θi)

(3)

where D = (ε2 − g2 − εη)2 sin4
θi + 4g2η2 cos2 θi and

k0 = ω/c.

The electric and magnetic fields of the incident wave, with
the time factor exp(iωt) dropped, are[

Ei
Hi

]
=

[
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]
exp [−ik0(qix+ piz)] , (4)

where qi = (ki/k0)sinθi and pi = (ki/k0)cosθi. From the
wave polarization coefficients, we obtain
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where Z0 is the impedance of free space. Note that if
θi→ θres, the magnetic field components tend to zero. In
what follows, we normalize the incident wave as

|eix|2 + |eiy|2 + |eiz|2 = 1. (6)
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Figure 1. Geometry of the problem.

4 General Solution to Maxwell’s Equations
in a Magnetoplasma in Cylindrical Coor-
dinates

Because of the symmetry of the problem (see Figure 1), the
electric and magnetic fields of the scattered wave can be
represented as[

Es
Hs

]
=

+∞

∑
m=−∞

[
EEE m(ρ)
HHH m(ρ)

]
exp(−imϕ− ik0 pz). (7)

The expressions for the components of EEE m and HHH m can be
found analytically from Maxwell’s equations in a magneto-
plasma with tensor (1) (for details, see [8]):
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Em,ϕ(ρ) = i
2

∑
k=1

Ak,m

[
H(1)

m+1 (k0qkρ)

+ qk
nk p+η

η (p2− ε +g)
m

k0ρ
H(1)

m (k0qkρ)

]
, (9)
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where H(1)
m (·) is Hankel function of the first kind,
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Figure 2. The wave normal surface in frequency range (2)
and the corresponding group (Vgr) and phase (Vph) veloci-
ties. Quantities p and q are the longitudinal and transverse
components of the wave normal vector, respectively.

R(p) =
{
(η− ε)2 p4 +2

[
g2(η + ε)− ε(η− ε)2] p2
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(
ε

2−g2− εη
)2
}1/2
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Here we assume that ℜ[R(p)] > 0 and ℑ[qk(p)] > 0. The
latter inequality corresponds to the vanishingly small fields
at ρ →+∞. If ℑ[qk(p)] = 0, then the weak collisional dis-
sipation should be introduced and its rate should be tended
to zero.

In (8)–(13), the terms with k = 1 correspond to the evanes-
cent O mode, and q1 is purely imaginary. The terms with
k = 2 correspond to the propagating X mode, and q2 > 0.

Hankel function of the first kind corresponds to the ingo-
ing waves of phase and therefore to the outgoing waves
of energy in plane z = const (see Figures 1 and 2). This
is in agreement with the radiation conditions at infinity in
anisotropic media [4].

5 Partial Solution to the Scattering Problem

A solution to the scattering problem—namely, the propa-
gation constant p and coefficients A1,m and A2,m—follows
from the boundary conditions for a perfect electrical con-
ductor (see Figure 1):

(Esϕ +Eiϕ)
∣∣
ρ=a = 0, (Esz +Eiz)

∣∣
ρ=a = 0. (17)

From that we have p = pi and

A1,m =− Φ̃mZ̃2,m− Φ̃2,mZ̃m

Φ̃2,mZ̃1,m− Φ̃1,mZ̃2,m
, (18)

A2,m =
Φ̃mZ̃1,m− Φ̃1,mZ̃m

Φ̃2,mZ̃1,m− Φ̃1,mZ̃2,m
(19)

where
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Figure 3. Dependence of kiasinθi on θi for 0 < θi < θres,
a = const, and ki = ki(θi).
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for k = 1,2. Here, Jm(·) is Bessel function of the first kind.

In (8)–(13), the terms with k = 1 vanish at some distance
from the cylinder but contribute to the field structure in its
vicinity. At ρ → +∞, only the terms with k = 2 survive.
Furthermore, in (8), (9), (11), and (12), only the first terms
in square brackets prevail at ρ → +∞ for k = 2. Conse-
quently, the radar cross-section per unit length equals

σ(ϕ) =

∣∣∣∣∣ +∞

∑
m=−∞

A2,m exp
(
− iπm

2
− imϕ

)∣∣∣∣∣
2

. (20)

6 Calculation Results

The scattering characteristics were calculated for the
plasma parameters typical for the Earth’s magnetosphere
(namely, at the geomagnetic equator for McIlwain param-
eter L = 5): ωp ≈ 1.8× 105 s−1 (plasma density Ne =
10 cm−3), ωc ≈ 3.8× 104 s−1, and for the radiation fre-
quency ω ≈ 2.3×104 s−1. The corresponding dependence
of parameter ξ ≡ kiasinθi on θi for 0< θi < θres, a= const,
and ki = ki(θi) [see (3)] is shown in Figure 3. When
θi → θres, wavenumber ki and therefore parameter ξ in-
crease significantly due to the nature of quasi-electrostatic
waves.

The radar cross-section per unit length σ(ϕ) in plane z =
const for different values of θi/θres is shown in Figure 4.
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Figure 4. The radar cross-section per unit length σ(ϕ) in
plane z = const for different values of θi/θres. Energy in the
incident wave propagates from the right side (from ϕ = 0◦

to ϕ = 180◦).

When ξ � 1, scattering is quasi-isotropic. When θi→ θres
and ξ & 1, scattering takes place predominantly in the di-
rection ϕ = 180◦—the same direction as the incident wave
energy propagates in (see Figure 1). In terms of energy, this
is the forward scattering process.

7 Conclusion

The results are in agreement with the general scattering the-
ory [9]: small (such that kiasinθi� 1) scatterers are char-
acterized by isotropic scattering, whereas forward scatter-
ing corresponds to large scatterers.

The problem considered in this paper corresponds to quite
a simple model: the Debye sheath around the cylinder and
collisions in the plasma are neglected. However, these ef-
fects can be taken into account using the same approach.
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