
URSI GASS 2021, Rome, Italy, 28 August - 4 September 2021

Optimizing Radiofrequency Field and Induction Coupling in Slotted Cold Crucibles

Marco Cavenago*(1), Michele Comunian(1), Giorgio Keppel(1), Antonio Rossi(2) and Francesco Sciarrabba(1)
(1) INFN-LNL, viale dell’Universitá n.2 , 35020 Legnaro (PD) Italy, http://www.lnl.infn.it

(2) Officina dei Materiali, Romano d’Ezzelino (VI), Italy

Abstract

Using radiofrequency (rf) for heating and levitation of al-
loy samples is greatly simplified by a passive element, the
slotted cold crucible (similar to Faraday shield for rf plasma
ion sources), which if properly designed can shape and con-
centrate the axial (non static) magnetic field profile. The
effect is better represented and verified in 3D simulations
(very time consuming) as shown here, even if some simpli-
fied 1D and 2D models may help understanding. Bound-
ary conditions at large radius are discussed. Moreover, the
sensitivity to important parameters (levitated weight vs fre-
quency and power, sizes of crucible, sample conductivity,
radius of sample to skin depth ratio) are demonstrated in
a schematized 3D geometry, easily parametrized. Finally
complete 3D simulation of a realistic design (adequate for
clean alloy melting) are also reported.

1 Introduction

Radiofrequency heating is well established in several ap-
plication, including ion source plasma[1], so that its use
for melting alloys (or heating samples) is natural[2]; the
Lorentz force on current induced in the sample may (on
average) support the sample against gravity, providing lev-
itation for adequate objects and magnetic field B profiles;
let us consider cylindrical coordinates Orψz, with gravity
directed towards the negative z. For simplicity let sample
be a radius Rs sphere (or an ellipsoid, see Fig. 1), centered
at zs; all coils have the same axis z and one only angular fre-
quency ω , with frequency f =ω/2π ranging from 1 kHz to
10 MHz as later optimized. Since induced current is mostly
in ψ direction, the support force has a zero on the z axis,
where sample is supported by surface tension and dynam-
ical effects[2], to be verified in following studies; here we
simply compute the total rf power Pt and the total force Fz
for a given total sample volume Vs, defining the average
critical density:

da = Fz/(gVs) , dw = da/Pt (1)

to be compared with ds the density of sample; of course
ds < da is a necessary (but not sufficient) condition for levi-
tation, otherwise the sample will fall; in other words, when
the critical density per unit power dw is calculated, we know
that Pt > ds/dw for levitation. We have vector potential
A ∼= ℜψ̂Aψ(r,z)eiωt ; the real part ℜ operator is usually
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Figure 1. Sketch of test geometry (not to scale): (a) rz sec-
tion (note size definitions); (b) quarter of xy section (sample
omitted); (c) 3D view of coil, sample and a quarter of cru-
cible.

omitted (phasor notation). The rf power is dissipated in the
coil, in the crucible (with conductivity σc) and in the sample
(with conductivity σs), mainly dependent from their skin
depths

δs = (μωσs/2)−1/2 , δc = (μωσc/2)−1/2 (2)

When δs � Rs the power loss in sample Ps is easily esti-
mated by a surface integral

Ps = 1
2

∫
dSZrs |H‖|

2 , Zs = (1+ i)/σsδs = (iμω/σs)1/2

(3)
where Zrs =ℜZs with Zs the planar surface impedance, dS is
the surface element and H‖ are the tangential components
of the magnetic field. Similarly for coils and crucible, with
impedance Zc, which is convenient to keep as low as eco-
nomically feasible; this implies they are made of copper
alloys (with water cooled channels); we define the param-
eter M = Rs/δs, so eq. 3 applies for large M. For any M,
in 3D simulations, power loss Pt is calculated from applied
voltage and currents and also verified by volume integrals.



2 The 3D test simulation setup

As shown in Fig. 1, the helical coil of pitch p with N com-
plete turns can be approximated with N rings with conduc-
tor radius Rw, average coil radius Rc, provided that[3] each
ring has an infinitesimal thin cut to apply a voltage Vn[3]
per turn for current control; due to crucible φ ∼= 0 except
for coil applied voltage. Since E = −A,t −∇φ , the total
current density results

j= σE=−σ [iωA+(2πr)−1Vn] (4)

The current In in each ring n must equal one common value
Ic, so that Vn must be adjusted until In = Ic (most solvers[5]
now include this option; otherwise,Vn is iteratively adjusted
by an user code until In = Ic is satisfied within 0.02% toler-
ance). The Maxwell equation

∇×H= j+D,t , H= μ−1∇×A (5)

is discretized using so-called edge elements[4] for A (com-
plicate details about gauge fixing and differentiation of A
are discussed elsewhere [5]). Note that D,t is of order
(ωRc/c)2 and thus usually negligible. At material inter-
faces, we have the conditions of continuity of H‖ and of
normal component Bn of the magnetic flux density.

To complete geometry description, the ring assembly height
is La = (N−1)p+2Rw (the real helical coil length is Np+
2Rw), while shortest distance between rings is p− 2Rw; in
our test case, N = 6, p = 0.02 m and Rc = 0.07 m, so that
La and 2Rc are comparable. Crucible outer radius is R1 =
0.06, length Lc = 0.12 m, while inner radius ranges from
R3 = 0.02 (lower hole) to R2 = 0.04 m (upper hole); gap
semiwidth gs is 1 mm. We define a cartesian system Oxyz
and spherical system Oρθψ related to cylindrical Orψz by
ρ2 = r2+z2 = x2+y2+z2 and z= ρ cosθ (please note θ is
the polar angle while ψ is the azimuth and ρ the spherical
radius). Outer boundary is a large spherical surface ρ = R0;
in our example R0 = 0.31 m.

It is convenient to simulate only one quarter of geometry,
using symmetry at planes xz and yz; here the boundary con-
dition (bc) is Bn = 0, that is no field line crosses these sur-
faces, that is magnetic insulation (for connected boundaries
this gives A‖ = 0). As to the outer sphere, even for reason-
ably large R0, magnetic insulation is a fair to poor approxi-
mation; the seemingly simpler H‖ = 0 (negligible magnetic
field) condition is also worst; multiphysics codes now offer
the option to add infinite elements around the R0 sphere, at
the price of computation time. Alternatively, a physically
correct boundary condition is the dipole one, see eq. 7, as
shown just below. Note that for large ρ the quadrupole and
higher terms are negligible respect to the dipole term

Aψ =−
μ0md

4π
sinθ
ρ2 (1− ikρ)eikρ (6)

with k = ω/c and md ≡ 1
2
∫
x× jd3x, with d3x the volume

element; the dipole term satisfies the bc:

−n×H=
kc

μ0R0
PA , P =

1
r2

⎡
⎣−y

2 xy 0
xy −x2 0
0 0 0

⎤
⎦ (7)

and kc ∼= (1− 1
2k

2
0)/(1+

1
2k

2
0) with k0 = ωR0/c, as verified

by standard calculations. For no crucible case, the dipole
moment is md = πNR2

cIc. Otherwise, let z = zn the middle
plane of each ring andCn the area of the crucible cut by this
plane; in first approximation, the dipole moment mn (due
to n-th ring) is reduced as the ratio of this area to whole
ring enclosed area πR2

c . Thus mn = πR2
cIcEn with factor

En = 1− (Cn/πR2
c) related the empty space fraction inside

ring and md = ∑nmn. Moreover the weighted average of
ring positions zc = ∑znmn/md is computed before simula-
tion, and coil, crucible, and load are translated by −zc. Af-
ter translation zc = 0; this coil centering further suppresses
non-dipole terms, as verified at simulation end, by a plot of
H‖ on the outer sphere.

Figure 2. Simulated resistance of a pure coil vs. Nd (ndof),
for several mesh styles m = 0, . . . ,7, as labeled, with pa-
rameters h1, h2 (see text for their definition); theory results
without (’-prox’) and with proximity (’+prox’) effect are
shown as lines; Bu1926 is Ref[6].

3 Simulation validation and results

Making a 3D model mesh requests several choices of where
to refine the mesh, which should be thinner than δc at cru-
cible and coil faces; several mesh styles (numbered with m
in Fig. 2) were compared at f = 400 kHz, perhaps with
local refinements h1 (coil surface element size) and h2 (ele-
ment size of some crucible surface) added to solver stan-
dards. The solver normal mesh is m = 2 (actually very
coarse), the finest standard solver mesh is m = 1, while
m= 0 refines normal mesh only on gap surface; other cases
add more local refinements to a moderately fine mesh; fi-
nally style m = 7 uses layer elements thinner than δ in the
coil and the sample. The impedance Zc(coil) of an rf coil
is well-known[6, 7], even if several effect needs to be taken
into account, including skin depth and proximity effects.
Simulations, when crucible and load conductivities are set
to zero, must match result: let Zc(sim) =∑Vn/Ic. The resis-



Figure 3. The near axis field Bz(0,0,z) (solid line) with
maximum at zM and plateau at zP; note also: the crucible
outline (dotted line), the field Bz for x = R1 and y � gs
(dashed line), where the six coil turn peaks are visible, and
for x=R1 and y� gs (dot-dashed line), where compression
at zM and corner peaks are visible.

Figure 4. Comparison of fields with and without a σs= 106

S/m sample for f = 21 kHz; also the lift da and dw are
shown for several zs (sample center); see text for Bqz

tive part is shown in Fig. 2; by increasing the number of de-
grees of freedom (ndof) Nd the value ℜZc(sim) approaches
ℜZc(coil) very much, still leaving some error (maybe due
to theoretical estimate). The reactive part is larger, so rela-
tive errors respect to the well-known Nagaoka formula[7]
are negligible (less than 1%). The meshes are kept un-
changed during solution and scans, and style m = 7 was
finally chosen. With direct solver, Nd = 3× 106 dofs re-
quires 100 GB RAM, a practical limit especially for scans.

Crucible and coil conductivity were set to σc = 5.8× 107

S/m (cooled copper, plumbing grade) in fig. 3, showing Bz
on axis for Ic = i800 A and σs negligible; note the strong
asymmetry induced by crucible shaping in an otherwise
symmetric coil (no taper); ratio R(zM,zP) of Bz|axis at zM
and zP is satisfactorily about 2.5, which increases to 3 when
Bz on the line y = 0 and x = R3 is considered. Indeed the
flux Φi(z)∼= πBzr2i inside crucible inner radius ri(z) would
be constant if Ncgs = 0 with Nc the number of cuts; more
precisely, the flux change (leak or increase) rate is

Φi,z =−2Nc gs Bx(r+i ,0,z) , r+i = ri+ εi (8)

which is part of an approximate 1D model for Φi and
Bx; here εi is a small positive length, say εi ∼= gs. This

Figure 5. The critical density per unit power dw for sev-
eral sample radii vs merit factor M; (a) a lower conductivity
case; (b) higher σs

model will give R(zM,zP) ∼= (ri(zP)/ri(zM))α ∼= 4 with
α = 2+O(Ncgs/R3); from fig. 4 data we see α ∼= 1.3 for
flux leakage. The actual Lc ≡ Ncgs/R2 = 0.1 (named leak-
age parameter, necessarily Lc < π) here shown is a com-
promise between trapping flux in the crucible taper and ac-
cumulating flux in the ri = R2 part. In Fig. 3, note also the
naive estimate Bre fz = μ0Ic/p and the field on the x = R1
line [at square marker in Fig. 1.(b)], which shows oscilla-
tion due to coil structure and an average lower than Bre fz by
a factor similar to fN , the well-known Nagaoka factor fN
[7], roughly fN ∼= 1/(1+0.9Rc/(Np)).

Reported conductivity is about σs = 6×105 S/m for Ti just
above melting point (or 106 S/m for liquid Mo), then it de-
creases with temperature[8], so range σs = [0.4,1]× 106

S/m is studied here. A σs > 0 modifies the Bz(z) profile,
making a valley around zs as shown in fig. 4; moreover the
field phase changes significantly in the sample, as shown by
Bqz (component in quadrature wrt Ic). Anyway da(zs) as a
function of zs seems closely proportional to −Bz,z(z) from
fig. 3 data, (no sample) at least for the simulated condition
( f = 21 kHz, with a an ellipsoidal sample, xy section radius
Rs = 0.01 m, semi-height 0.02 m), which is remarkable.
Since f is constant, also dw is roughly proportional to fig.
3 result for −Bz,z. For stability, the lift must decrease when
zs increases, which give the criterion Bz,zz(zs)< 0, satisfac-
torily satisfied in a large interval (including taper of ri); for
adequate power, an equilibrium zs is then possible. Finally
in Fig. 5, with zs =−17 mm fixed, effect of Rs change and
ω change is shown; optimal dw is reached forM between 3
and 4 and is roughly proportional to σ0.6±0.1

s .



4 Improved crucible design

Based on the trend observed in the test simulations and on
practical consideration, some improvements were made to
our reference parameters, see Fig. 1. First, since flux com-
pression increases with sample radius (or when sample to
crucible distance ∼= R2 − Rs decreases) a relatively large
sample Rs = 15 mm was used (actually R1, R2, Rc and p
have been decreased, respectively to 24.5 mm, 20 mm, 31.5
mm and 11 mm, for prototype construction economy). Sec-
ond, since the lift strongly depends on fluxline compression
in the lower aperture (increasing as R2/R3), the radius R3
was further decreased (to about 5 mm average, with some
rounding), which also leaves more space for cooling chan-
nels.
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Figure 6. The critical density da vs sample center zs, with
Ic = 1 kA.
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Figure 7. The field Bz along the crucible axis z for various
sample position zs, for the f = 100 kHz case.

New geometry considers a larger number of cuts (Nc from
10 to 12) for better uniformity, with reduced cut width
2gs ≤ 0.75 mm, so that the leakage parameter Lc ∼= 0.2
still satisfies Lc � 1. We have five or more coil turns,
N ≥ 5, and cuts are limited to z< z2 = 64 mm, where now
z = z3 = 0 is the lower crucible face; the upper crucible
face is z= z1 = 80 mm. Figures 6 and 7 show the quantity
of Fig. 4 for the new geometry and parameters; in particu-
lar Ic = 1 kA, Nc = 10 and σs = 7.4× 105 S/m; moreover
N = 6 and coil wire radius Rw= 4 mm. The external bound-
ary conditions is made with an infinite element. The mag-
netic field and the force obtained on the crucible has been
studied as function of the sample position zs; considering
geometry constraint and large CPU-time requested for each
simulation, scan of zs was limited to the [32,50] mm inter-

val. As manifest in Fig. 6 result for da, only the zs ∈ [32,36]
mm range is stable [that is, da(zs) decreasing, but positive],
which is reasonable, since this range corresponds to larger
da, achieved only when the spherical sample is very near to
the crucible bottom. When the sample ball is in the middle
of the crucible, lift force and da become zero or negative.
Note also that Bz is much larger below sample than it is over
sample (see fig. 7), due to the realistic absence of cuts over
the z = z2 planes. The maximum of magnetic field is very
near to the crucible bottom. Note the perspective advantage
that sample is mainly heated in its lower part, so improving
convection inside sample.

This demonstrates that crucible shape can be reliably opti-
mized even under realistic conditions, with traceable effects
of design modifications. The contactless heating of alloys
(in vacuum or controlled atmosphere) will allow a host of
technological applications; also rf field enhancement is re-
markable.
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