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Abstract 
 
Due to distributed capacitance, a planar printed coil has 
self-resonance, which will significantly affect self-
inductance and mutual inductance. In this paper, the 
impact of self-resonance on self-inductance and mutual 
inductance of two coils is analyzed by the equivalent 
circuit, and the calculations of apparent self-inductance 
and apparent mutual inductance are derived. The analysis 
results can well explain the frequency characteristics of 
the planar printed coils’ self-inductance and mutual 
inductance obtained by full-wave simulation. Finally, the 
correctness of the analysis results derived from the 
equivalent circuit has been verified by the numerical 
example. 
 

1 Introduction 
 
Wireless power transfer (WPT) is used in portable 
electronic devices [1], implantable medical devices [2], 
electric vehicles [3], and so on. It is subject to intensive 
research by both academia and industry. The planar 
printed coil is a preferred WPT coil due to its low-profile, 
low-cost, and convenience for producing and assembling. 
 
Due to its distributed capacitance, the planar printed coil 
has self-resonance [4-5]. In terms of sizes, high-frequency 
WPT is preferred. However, the higher frequency, the 
more significant the effect of the self-resonance becomes. 
The self-resonance will affect not only the self-inductance 
but also the mutual inductance between two coils. Mutual 
inductance is crucial for magnetically coupled resonance 
(MCR) WPT and the wireless power transfer efficiency 
[6]. Consequently, it is necessary to evaluate the impact of 
self-resonance on the performances of two WPT planar 
coils for WPT. The influence of self-resonance on the 
single planar printed coil has been studied [4-5], but not 
two coupling coils. 
 
This paper’s main contribution is to analyze the impact of 
self-resonance on self-inductance and mutual inductance 
of two planar printed coils. By using the full-wave 
simulations, the impact of self-resonance on self-
inductance and mutual inductance of two coils is analyzed 
with the equivalent circuit. The analysis results derived 
from the equivalent circuit can well explain the frequency 
characteristics of self-inductance and mutual inductance. 

 

2 Impact of Self-resonance on Two Coils 
 
Fig. 1 presents the configuration of the two coils under 
study. The apparent self-inductance La and apparent 
mutual inductance Ma versus frequency were simulated 
with full-wave simulations, and the results are shown in 

 

Figure 1. The illustration of two identical planar printed 
coils with the width of 2 mm, the gap of 2 mm, the FR4 
dielectric, dielectric of 1.6 mm. The two coils are placed 
50 mm apart. 

Figure 2. The apparent self-inductance La and apparent 
mutual inductance Ma of the two planar coils obtained 
with full-wave simulation. 
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Fig. 2. The following formulas are used to compute La and 
Ma  
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where ‘Im’ means taking the imaginary part, Z11 is the 
self-impedance, Z21 and Z12 are the mutual impedance, 
and   is the angular frequency. From Fig. 2, it is seen 
that below 18 MHz, La and Ma have similar variations 
versus frequency. Beyond 18 MHz, La has three zero 
points (S1, S2, and S3), and Ma has two zero points (S1 and 
S3). Both La and Ma have jumps in values at S1 and S3, 
which indicate a parallel RLC resonance, while La has a 
smooth change at S2, which corresponds to a series RLC 
resonance. These resonances are due to the unremovable 
distributed capacitances of the coils. In the design of WPT 
system, the operating frequency should be avoided in the 
resonant region as far as possible. 
 
For comparison purposes, the apparent self-inductance La 
of the single planar printed coil (with the same dimension 
as the coil shown in Fig. 1) was simulated with full-wave 
simulation. The results are shown in Fig. 3. From Fig. 3, it 
is seen that La slowly increases with frequency until the 
frequency reaches 21 MHz. At 21 MHz, La changes 
abruptly, which corresponds to a parallel RLC resonance. 
Again the resonance is due to the unremovable distributed 
capacitances of the coil. 
 

As seen from the above figures, both the self-inductance 
and mutual inductances have self resonances, like that 
with the single planar printed coil [4-5]. As a result, while 
the circuit of Fig. 4 can represent the equivalent circuit of 
the single planar coil, the circuit of Fig. 5 can represent 
the equivalent circuit of the two coupling coils. 
 
The single planar printed coil can be equivalent to an 
RLC parallel resonant circuit as shown in Fig. 4 [7], 
where L is the true self-inductance (different from La), R 
is the loss resistance, and Cd is called the distributed 
capacitance. The coupling between adjacent conductors 
results in the distributed capacitance [7]. Assuming that 
the coil is lossless, La of the equivalent circuit shown in 
Fig. 4 can be written as follows 
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It is evident that the apparent self-inductance La is a 
function of the distributed capacitance and the operating 
frequency and differs from the true or low-frequency self-
inductance L. There is a singular point in La, when   

equals to 
1

dC L


 
  . This singular point is the self-

resonant frequency shown in Fig. 3, which will 
significantly affect La. As the frequency goes closer to the 
self-resonant frequency, the change of La becomes more 
and more drastic.  
 
In the next section, the impact of self-resonance on the 
two coupling coils is analyzed based on the single coil’s 
parallel resonant equivalent circuit. 
 

3 Analysis Based on Equivalent Circuit 
 

 
(a) 

 
(b) 

Figure 5. (a) The equivalent circuit of the two coupling 
coils. (b) The mutual inductance is decoupled by the 
equivalent voltage source. 
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Figure 3. The apparent self-inductance La of the single 
planar printed coil versus frequency obtained with full-
wave simulation. 
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Figure 4. The equivalent circuit of the planar printed coil. 
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The influence of self-resonance on two coupling coils is 
analyzed by using the equivalent circuit mentioned in Fig. 
3. The equivalent circuit of two coupling coils is shown in 
Fig. 5 (a), where M is mutual inductance between two 
coils. Note that no tuning capacitor is added in this system, 
and the parallel capacitors Cd1 and Cd2 are the distributed 
capacitance caused by the coils’ structures. It should be 
pointed out that Ma obtained with the full-wave simulation 
is different from the true mutual inductance M; Ma 
contains three parts: coils’ true mutual inductance M, self-
resonance, and capacitive coupling between two coils. 
Since the capacitive coupling between two coils is small, 
the equivalent circuit model, as shown in Fig. 5 (a), 
ignores the capacitive coupling between two coils. 
 
The mutual inductance M in Fig. 5 (a) is decoupled with 
the equivalent voltage source, as shown in Fig. 5 (b). In 
order to simplify the calculation and derivation, two coils 
are assumed lossless (R1=R2=0), because the loss 
resistance of the coil is usually less than 5 Ω. To facilitate 
the subsequent analysis, the port voltage and branch 
current are denoted as shown in Fig. 5 (b).  
 
Based on Kirchhoff’s law of voltage and current, six 
equations are obtained as follows: 
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By combining these six equations, the impedance matrix 
Z of the dual-port network can be written as follows: 
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Because the identical coils are selected (see Fig. 2), La 
calculated through Z11 or Z22 is the same. They can be 
computed with: 
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The denominators of La and Ma are the same. Namely, 
both have the same resonant point. Set the denominators 
of (14) and (15) equal to zero, and the following equation 
can be obtained for the resonant frequencies: 
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Two positive roots and two negative roots can be obtained 
by solving (16). The two positive roots correspond to the 
singular point S1 and S3 of La and Ma in Fig. 2, which 
causes La and Ma sharp change at the frequency. 
 
There are also zero points in La and no zero points in Ma 
(except =0 ); they are consistent with the simulation 
results in Fig. 2. Set the numerator of (14) equal to zero. 
The zero points of La can be found as 
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where the positive root corresponds to the zero point S2 of 
La in Fig. 2. The parallel resonant equivalent circuit can 
well explain the singularity and zero point of La and Ma in 
full-wave simulation. 
 

4 Simulation Verification 
 
In order to verify the correctness of analysis results 
derived from the equivalent circuit, the planar printed 
coils’ apparent mutual inductance Ma is modeled with the 
equivalent circuit. Accurate calculation of mutual 
inductance in the non-resonant region is more meaningful 
to guide the design of WPT system. Therefore, Ma in the 
non-resonant region is modeled in this section. The 
equivalent circuit parameters of the coil shown in Fig. 1 
are obtained as follows. 
 
Firstly, it is considered that the La obtained by full-wave 
simulation at low frequency (less than 1 MHz) is the ture 
self-inductance L of the coil. Therefore, L can be obtained 

TABLE I 
M AT DIFFERENT SEPARATIONS CALCULATED BY [8] 

h (mm) 10 30 50 70 
M (uH) 6.38 2.84 1.58 0.95 

 

 

Figure 6. The equivalent circuit modeled from the two 
coupling coils shown in Fig. 1. 
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from the simulation results of La in Fig. 3. Secondly, the 
distributed capacitance Cd can be calculated from the self-
resonant frequency (21.1 MHz) in Figure 3 and (18). 
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The equivalent circuit of the two identical coils shown in 
Fig. 1 has been established, and the circuit parameters are 
shown in Fig. 6. The mutual inductance M in Fig. 6 is 
calculated by analytical formula [8] as shown in Table I. 
Note that central approximation is used to calculate M, 
assuming that all loops are located in the middle of the 
outermost and innermost loops. Different values of the 
separation h between the two coils are selected to further 
verify the effectiveness of the presented equivalent circuit.  
 
Fig. 7 compared the apparent mutual inductances Ma 
computed by full-wave simulation and equivalent circuit. 
From Fig. 7, it can be observed that when the separation is 
large (h=70 mm), the Ma calculated by the full-wave 
simulation is in good agreement with that calculated by 
the equivalent circuit. When the separation is small (h=10 
mm), the Ma calculated by full-wave simulation is 
different from that calculated by the equivalent circuit. 
This is because when the two coils are close to each other, 
the capacitive coupling between two coils is strong. The 
influence of capacitive coupling is considered in the full-
wave simulation, while the presented equivalent circuit 
ignores it. To sum up, when the influence of capacitive 
coupling is small, the results calculated by presented 
equivalent circuit are in good agreement with the results 
of full-wave simulation, which proves the effectiveness of 
using the presented equivalent circuit to analyze the 
impact of self-resonance on mutual inductance. 
 

5 Conclusion 
 
This paper analyzed two planar printed coils’ self-
resonance by using the full-wave simulations and the 
equivalent circuit. The impact of the self-resonance on 

mutual inductance and self-inductance of two coils is 
analyzed. The single-coil self-resonance will result in the 
singularity of the two coils' impedance matrix, which will 
significantly affect mutual inductance and self-inductance 
of two coils. Therefore, the impact of self-resonance 
should be considered in a WPT system. Future work is to 
consider the capacitive coupling between two planar 
printed coils in the equivalent circuit and to extract the 
equivalent circuit of the planar printed coil accurately. 
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