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Abstract 
 

In this paper, the phenomenon of frequency splitting in 

resonating Wireless Power Transfer Systems is 

considered. In particular, the property of impedance 

inverters of converting an impedance into an admittance 

is here exploited to give a simple and intuitive explanation 

of that phenomenon. Furthermore, some analogies 

between WPT systems and filters are here highlighted 

showing that the frequency splitting phenomenon is also 

present in Chebyshev filter responses.  

 

1 Introduction 
 

The basic principles of the Wireless Power Transfer 

(WPT) have been introduced by Nikola Tesla in the first 

years of the 20th century. After that, for a long time, not a 

lot effort was put in this kind of research. In the last years 

however, after the paper of the MIT group [1], a lot of 

contributions on this topic have been published and many 

different applications, ranging from biomedical devices to 

automotive, have been proposed. 

One of the key points of the WPT is represented by the 

so-called frequency splitting phenomenon. It consists in 

the splitting of the resonant frequencies when the 

coupling between two coils of a WPT system became 

larger than a threshold value. Several papers were 

published to explain the frequency-splitting phenomenon. 

As an example, in [2]-[3] equivalent circuits are used, 

giving a quite rigorous explanation. In [4] instead, a full 

wave and more complex modelling has been used. 

In this paper, an equivalent circuit like that used for filters 

and based on impedance inverters has been exploited to 

model an ideal WPT systems. Impedance inverters have 

the capability of transforming an impedance into an 

admittance (and vice versa). This property has been used 

here to explain in a very simple and intuitive way the 

splitting frequency phenomenon.  Furthermore, some 

analogies between WPT systems and filters have been 

highlighted, showing that filter Chebyshev responses use 

the splitting frequency phenomenon (even though in filter 

theory is not used that name). 

 

2 Equivalent Circuit 

 
To better understand the phenomenon of the frequency 

splitting in Wireless Power Transfer (WPT), the model of 

the WPT system here considered is kept as simple as 

possible and losses are not considered. 

 

   

Figure 1. Coupled coils and their equivalent circuits. (a) 

Mutually coupled coils. (b) Electronic network symbol. 

(c) T-network equivalent circuit. (d) T-network equivalent 

circuit with separed induttance and mutual inductance 

contributions. (e) Impedance inverter based equivalent 

circuit. 

The two coupled coils (Figure 1a) have a very well-

known electronic symbol (Figure 1b) which behavior is 

described by the equation: 
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Where Li represents the self-inductance of the i-th coil 

(i=1,2) whereas M represent the mutual coupling [5]. It is 

very simple to demonstrate that the same response can be 

obtained by the T-network of Figure 1c. By splitting the 

contribution of the horizontal branches into two 

contributions the circuit of Figure 1d is obtained. The T-

network consisting of an inductance M in the vertical 

branch and -M in the horizontal branches has the 

following impedance matrix. 
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That impedance matrix also represents the impedance 

matrix of an impedance inverter � � �
 and this leads to 

the well-known circuit of Figure 1d where two coupled 

coils are represented by the self-inductances of each coil 

connected through an impedance inverter. 

 
Considering that we are dealing with resonating wireless 

power systems, according to Figure 2., two capacitances 

are added to the system to make it resonant. Obviously, in 

the physical system the added capacitances can model 

both lumped capacitances added to the coil and parasitic 

capacitance of the coil itself.  

 

 

 

Figure 2. Resonant synchronous coupled coils. (a) 

Physical structure. (b) Equivalent circuit. 

 
The circuit of Figure 2b is a well-known circuit used for 

both WPT systems and filters. Actually, that circuit, 

especially for filters, is used in the version with two 

additional impedance inverters between the input (output) 

impedance and first (last) series resonator, but for our 

scope it is convenient to use the one in Figure 2. The fact 

that filters and coupled coils shares the same equivalent 

circuit means that coupled resonant coils can be seen as a 

two-pole filter for proper values of circuit components.  

 

3 Frequency splitting 
 

In this paragraph, a very simple method for the 

explanation of frequency splitting behavior based on a 

property of impedance inverters is shown. 

As suggested by its name, one of the most important 

property of an impedance inverter is its capability of 

inverting the load impedance. This can be easily 

demonstrated by using eq. (2) and it is illustrated in 

Figure 3: an impedance connected to the port 2 of the 

impedance inverter is seen from port 1 as the inverse of 

the impedance multiplied by the square of K, where K is 

the value of the impedance inverter. 

 

  

Figure 3. Impedance inverter and its capability of 

inverting load impedence. 

 

 

Figure 4. Equivalent network of the synchronous 

resonant coupled coils separated in two branches. 

 

This property is exploited to analyze the resonances of the 

circuit in Figure 2. According to Figure 4, the circuit is 

divided into two branches. The impedance inverter is left 

in the right branch. The left branch can be seen as a 

generator with an internal impedance Z where Z is: 

 

� � �� � ��	 � 1
��� (3) 

Considering the right branch, because of the symmetry of 

the circuit, the impedance connected to right port of the 

K-inverter is the same of (3). According to the property of 

the K-inverter, the input impedance Zin seen at the left 

port of the K-inverter is then the inverse of Z multiplied 

by the square of K: 
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According to the maximum power transfer theorem, when 

Zin = Z* all incoming power from the left branch 

(behaving as a generator with internal impedance Z) is 

delivered to the right branch (load).  In that condition all 

the power arrives to the load ZL, the scattering parameter 

S11 has a reflection zero and the two coils resonate. This is 

illustrated in the graphs from Figure 5 to Figure 8. For all 

those graphs the following values have been considered: 

�� � �� � 0.1 �, 	 � � � �
��

 and �� � 1, where ��  



 

Figure 5.  Coupled coils: branch input impedances |Z| and 

|Zin| and scattering parameters for K=0.25. 

 

 

Figure 6. Coupled coils: branch input impedances |Z|, 

|Zin| and scattering parameters for K=0.12. This 

configuration corresponds to the Chebyshev filter 

response.  

 

 

represents the resonant frequency of the isolated coils 

(more precisely: the isolated coil plus its capacitance, 

according to Figure 2b). 

   In Figure 5, the case of two closed coils which mutual 

coupling corresponds to an impedance inverter K = 0.25 

is shown. In the upper graph the amplitude of the 

impedances Z and Zin = ��/Z are plotted. In practice the 

graph of Zin corresponds to the graph of the inverse of Z 

multiplied by a constant (��). That constant is the only 

value that changes when the distance between the coils 

changes. There are two frequency points where the two 

curves intersect. At those frequencies coils resonate, and 

all the power generated by the source arrives to the load.  

 

Figure 7. Coupled coils: branch input impedances |Z|, 

|Zin| and scattering parameters for K=0.1. This 

configuration corresponds to the maximally flat filter 

response. 

 

 

Figure 8. Coupled coils: branch input impedances |Z|, 

|Zin| and scattering parameters for K=0.12.  

 
This can be also seen in the scattering parameter graph 

shown below the impedance graph, where S11 = 0 and S12 

= 1 at the frequency where Z and Zin intersect. The fact 

that the two curves intersect, means that |Z| = |Zin| as 

curves represent the amplitude only. However, in order to 

obtain the matching, additional conditions are necessary: 

real parts shall have the same amplitude and sign and 

imaginary parts shall have same amplitude and opposite 

sign. Even though for the sake of conciseness the graph of 

real and imaginary parts is not shown here, this condition 

is satisfied in all cases when symmetry is preserved in the 

circuit and this is true for all graph here presented. 

Increasing the coil distance, the value of the impedance 

inverter decreases. In Figure 6, the case with K = 0.12 is 
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shown. The impedance Z remains the same of that in 

Figure 5, while the inverse of Z used to obtain Zin is 

multiplied by a smaller constant. Consequently, the two 

intersection frequencies become closer. The system is 

now working as a filter with Chebyshev response, as can 

be clearly seen from the graph of the scattering 

parameters. By keeping increasing the coil distance (i.e. 

decreasing K), at a certain point the two intersections 

collapse into one. In our example this happens when 

K=0.1, as shown in Figure 7 where Z and Zin have the 

same value in just one frequency point, corresponding to 

the resonance frequency of the isolated coils at �� . As 

shown in the scattering parameter graph, this results in a 

response with a single resonance. This corresponds to a 

filter having a maximally flat response. 

Increasing the coil distance, K became lower than 0.1 and, 

as shown in Figure 8, Z and Zin no longer intersect. This 

means that the matching condition Zin = Z* is no longer 

satisfied and part of the power is back-scattered, as can be 

seen from the scattering parameters graph. In any case, 

because Z has a minimum point in ��  (in our example 

�� � 1), that point represent the angular frequency where 

the curves are closer, and this explains why �� is still the 

angular frequency at which there is the higher amount of 

power that is dissipated on the load. 
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