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Abstract

The method of shooting and bouncing rays (SBR) was orig-
inally developed for radar cross section (RCS) analysis of
aircraft engines, but is today widely used in many appli-
cations requiring high-frequency approximations. A dense
grid of ray-tubes are launched from the source and traced by
the laws of geometrical optics (GO) until they reach a de-
fined exit aperture, from which the far field contribution of
the ray-tube is obtained by surface integration. Two alterna-
tives have been suggested on where to perform the surface
integration, namely (1) on the ray-tube cross-section or (2)
on the exit aperture. The first option is convenient as the
electrical field is assumed constant in the ray-tube surface
and has been suggested for complex scattering problems.
In this paper, it is demonstrated that the surface integration
over the ray-tube area can cause a ripple anomaly. It is
illustrated that the ripple is caused by omitting parts of the
integration surface from which there are no power flow. It is
concluded that exit aperture integration should be selected
in SBR analysis.

1 Introduction

The shooting and bouncing ray (SBR) method was origi-
nally developed for radar cross-section analysis of aircraft
engine cavities [1], but was later extended for dielectrics
[2] and has recently been found useful for the analysis of
radomes [3]. In SBR, a large number of rays are launched
to hit the scattering object (e.g. the aircraft cavity). The rays
are then traced using the laws of geometrical optics (GO),
until the ray reaches a defined exit aperture, from which
the far field contribution of the ray is obtained by surface
integration.

Two alternatives are suggested on where to perform the sur-
face integration [4], namely: (1) over the ray-tube area or
(2) over the exit aperture. The first option is convenient as
the electrical field is assumed constant in the ray-tube sur-
face and has been suggested for complex scattering prob-
lems [4]. In this paper, it is demonstrated that the surface in-
tegration over the ray-tube area can cause a ripple anomaly.
By demonstration for simple geometries, it is illustrated that
the ripple is caused by omitting parts of the integration sur-
face from which there are no power flow.
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Figure 1. The sources are contained inside the volume V .

In the next section, the integral representations which are
the foundation of the surface integration in SBR are briefly
revisited. The ripple anomaly is then demonstrated for sim-
ple spherical geometries in the following sections.

2 Method

2.1 Integral representations

The integral representations for the electromagnetic fields
(see e.g. [5]) show that the time-harmonic electromagnetic
fields (with time dependence e−iωt ) in an arbitrary observa-
tion point r outside the source volume V can be represented
by surface integrals of the tangential electric E and mag-
netic field H over the boundary of V as

i
η0

k
∇×

[
∇×

∫∫
∂V

g(k, |r− r′|)(n̂(r′)×H(r′))dS′
]

+∇×
∫∫

∂V
g(k, |r− r′|)(n̂(r′)×E(r′))dS′

=

{
E(r) r outside V
0 r inside V

(1)

where k is the wave number, η0 is the free-space wave
impedance, n̂ is the unit normal to ∂V directed out of V
as shown in Figure 1 and the scalar Green function is

g(k, |r− r′|) = eik|r−r′|

4π|r− r′|

By asymptotic analysis where |r| → ∞, the above integral
representation is simplified to the corresponding far field
amplitude as (see e.g. [5])

F(r̂) = i
k2

4π
r̂×

∫∫
∂V

[
n̂(r′)×E(r′)

−η0r̂× (n̂(r′)×H(r′))
]
e−ikr̂·r′ dS′

(2)
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Figure 2. Ray-tube versus exit aperture integration.

where the electrical field is given by

E(r) =
eikr

kr
F(r̂)

The next step is to simplify the far field integral for a ray-
tube. The electric and magnetic fields of the n:th ray-tube
are denoted En and Hn, respectively. In GO, the electric and
magnetic fields are related through the plane wave relation:

η0Hn = k̂n×En

where k̂n is the direction (unit) vector of the n:th center ray.
For the case of ray-tube integration, n̂ = k̂n, and the far field
integral is simplified to

Fn(r̂) = i
k2

4π
r̂×

∫∫
Sn

[
k̂n×En + r̂×En

]
e−ikr̂·r′dS′

≈ i
Ank2

4π
r̂×
[
(k̂n + r̂)×En

]
e−ikr̂·rn

(3)

where Sn is the cross-sectional surface of the ray-tube,
which is orthogonal to the ray vector k̂n, An is the area of Sn
and rn is the intersection point between the center ray and
Sn (the exit aperture). For the case of exit aperture integra-
tion, generally n̂ 6= k̂n as shown in Figure 2 and the far field
integral simplifies to

Fn(r̂)≈ i
A′nk2

4π
r̂×
[
n̂×En

−r̂× (n̂× (k̂n×En))
]
e−ikr̂·rn

(4)

where the projected surface area is

A′n =
An

n̂ · k̂n

The total far field amplitude is obtained by adding the indi-
vidual contributions as

FSBR(r̂) = ∑
n

Fn(r̂)

where Fn is computed with ray-tube integration according
to (3) or exit aperture integration according to (4).

In the next subsection, the ray-tube and exit aperture inte-
gration formulas are compared.

2.2 Ripple anomaly of ray-tube integration

In this subsection, an electrical dipole source located inside
a spherical surface is analysed with SBR, see Figure 3. The
electric and magnetic fields for an electrical dipole located
at the origin and oriented along the z-axis are [5]

E0(r) =
pk2

ε0

eikr

4πr

{
[3r̂(ẑ · r̂)− ẑ]

(
1

k2r2 −
i

kr

)
+r̂× (ẑ× r̂)

}
H0(r) =−ikω p

eikr

4πr

(
i− 1

kr

)
r̂× ẑ

(5)

where p is the dipole moment. The corresponding far fields
are obtained by noticing that (kr)−1 and (kr)−2 vanish as
r→ ∞, giving

E0(r) =
pk2

ε0

eikr

4πr
r̂× (ẑ× r̂)

H0(r) = kω p
eikr

4πr
r̂× ẑ

(6)

The dipole moment is selected to p = 4πε0/k3 to normalize
the far field amplitude. Notice that the above far fields fulfil
the GO relation

η0H0(r) = r̂×E0(r)

To establish starting points for the rays, the dipole is en-
closed in a spherical surface with radius ρ , which is sliced
equidistantly in the spherical angles θ and φ through{

θm = m∆θ = mπ/(M+1) where 1≤ m≤M
φmn = (n−1)∆φm = (n−1)2π/Nm where 1≤ n≤ Nm

where M and Nm are selected to provide sufficiently small
integration areas at the exit aperture. With the above spher-
ical angles, the starting point of the corresponding center
rays launched from the source is given by

rmn = ρ r̂(θm,φmn)

The cross-sectional area of the ray-tube is at the starting
point rmn given by

A(1)
mn =

∫
θm+∆θ /2

θm−∆θ /2

∫
φm,n+∆φm

φm,n−∆φm

ρ
2 sinθ dθdφ

= ρ
2 sinθm 2sin(∆θ/2)∆φm

Note that 2sin(∆θ/2)≈ ∆θ for small ∆θ . The total surface
area is given by

M

∑
m=1

Nm

∑
n=1

A(1)
mn ≈ 4πρ

2

The above electrical dipole and its sphere is now trans-
lated from the origin to ẑa/2. Hence, the starting points
of the translated source are given by r(1)mn = rmn + ẑa/2



n̂

ρ Exit aperture

z

a

a/2
r
(1)
mn

r
(2)
mn

k̂mn

Figure 3. The radius of the exit aperture sphere is a and
the dipole source illuminating the exit aperture is located at
ẑa/2. The small sphere enclosing the dipole provides the
starting points for the rays launched from the dipole source.

and the corresponding ray vectors are k̂mn = r̂mn, where
r̂mn = rmn/|rmn|, while the electric field at the starting point
is given by (6) as

E(1)
mn = E0(rmn)

The electric field, according to GO, at a travel distance s
from the starting point is given by [1]

E(2)
mn(s) = E(1)

mn

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
eiks = E0(rmn)

ρ

ρ + s
eiks

where ρ1 = ρ2 = ρ are the radii of curvature of the wave
front. Finally, the dipole source is enclosed in a spheri-
cal exit aperture centered at the origin and with radius a as
shown in Figure 3. The intersection point between the ray
and the large sphere is found by solving for sm > 0 in the
following equations{

r = rmn + ẑa/2+ r̂mnsm

|r|= a

which gives

sm =
a
2
(√

3+ cosθm− cosθm
)

where the positive square root has been selected to yield
a positive travel distance. The cross-sectional area of the
ray-tube at the exit aperture, denoted A(2)

mn , is determined by
conserving the total power in the ray-tube, i.e.

|E(1)
mn |2A(1)

mn = |E(2)
mn(sm)|2A(2)

mn

Figure 4 shows the θ -component of the far field amplitude
computed with SBR according to (3) and exit aperture in-
tegration according to (4). The solid line is the exact result
given by (6). The radius of the sphere is a and ka = 20π ,
where k is the wavelength.

2.3 Effect of holes in the integration surface

In the previous section, it was demonstrated that ray-tube
integration can cause erroneous ripple in the far field, which
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Figure 4. The θ -component of the far field amplitude com-
puted with ray-tube integration according to (3) and exit
aperture integration according to (4). The radius of the
sphere is a = 0.3 m and the dipole is displaced a/2 from
the center of the sphere, see Figure 3.

is not seen when using exit aperture integration. Consider-
ing the entire effective integration surface of Section 2.2,
it is obvious that exit aperture integration yields a closed
effective integration surface (i.e. the exit aperture sphere).
However, using ray-tube integration, the effective integra-
tion surface contains holes in between different θm-angles.
Notice that no power is flowing through these holes, as the
unit normal vectors of the holes are orthogonal to the Poynt-
ing vectors.

To explore the effect of (zero power flow) holes in the inte-
gration surface, a dipole enclosed in open and closed Huy-
gens’ surfaces is now considered. The dipole is located at
the origin and is enclosed inside two hemispheres centered
at the origin, with different radii, see Figure 5. The E and
H from the enclosed dipole is evaluated according to (6) on
the open and closed surface, respectively, and the far field
is then calculated by (2). The result is shown in Figure 5,
where clearly even small holes with zero power flow may
cause erroneous ripple in the far field amplitude. Notice
the small error in the integral representation result for the
closed surface. The error is due to the fact that the inte-
grated fields are far field approximations given by (6). The
error vanishes if the radii of the hemispheres are sufficiently
increased or if the total fields given by (5) are integrated.

To further explore the effect of holes in the Huygens’ sur-
faces, the near fields are calculated by the integral represen-
tations (1) for the open and closed surface, respectively. In
this case, the E and H are the total fields given by (5). The
radii of the upper and lower sphere are 4.75λ and 5.25λ , re-
spectively, where λ is the free-space wavelength. The mag-
nitude of the Poynting vector is evaluated over the dashed
scan line shown in Figure 6. It is seen in Figure 6 that the
null field is distinct for the closed surface, but not for the
open surface which is lacking a strict definition of when
the point of observation is inside the volume V , where the
extinction theorem of (1) produces the null field.
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Figure 5. The far field amplitude for an open and closed
surface, respectively. The dipole moment is chosen to nor-
malize the far field amplitude. The small error in the inte-
gral representation result for the closed surface is due to the
fact that the integrated E and H are far field approximations.
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Figure 6. The magnitude of the Poynting vector evaluated
by the integral representations (1). The dipole axis is di-
rected out of the paper and the dipole moment is selected
such that the power is one at the line of observation.

3 Conclusion

In this paper, it was demonstrated that ray-tube integration
can cause erroneous ripple in the far field, which is not seen
when using exit aperture integration. It was illustrated that
the ripple is caused by omitting parts of the integration sur-
face from which there is no power flow. It is concluded that
exit aperture integration should be selected in SBR analysis.

Furthermore, it was demonstrated that the ripple is arising
from the integral representations (1) when the integration
surface is not closed to form the entire boundary of the
considered volume V . Hence, Huygens’ surfaces should
be closed in general, as even holes from which there is no
power flow may give ripple in the evaluated near and far
fields.

4 Acknowledgements

The financial support by the Swedish Foundation for Strate-
gic Research is gratefully acknowledged.

References

[1] H. Ling, R. Chou and S. W. Lee, “Shooting and bounc-
ing rays: Calculating RCS of an arbitrary cavity," IEEE
Trans. on Antennas and Propagation, Vol. AP-37, No.
2, pp. 194-205, February 1989.

[2] R. Brem and T. F. Eibert, “Shooting and bouncing
ray (SBR) modeling framework involving dielectrics
and perfect conductors," IEEE Trans. on Antennas and
Propagation, Vol. 63, No. 8, pp. 3599-3609, August
2015.

[3] S. Poulsen, “Shooting and Bouncing Rays in
Radomes," 2019 International Conference on Electro-
magnetics in Advanced Applications (ICEAA), IEEE,
pp. 449–452, 2019.

[4] S. W. Lee, H. Ling and R. Chou, “Ray-tube integration
in shooting and bouncing ray method," Microwave and
Optical Technology Letters, Vol. 1, No. 8, pp. 286-289,
October 1988.

[5] Gerhard Kristensson, Scattering of Electromagnetic
Waves by Obstacles, SciTech Publishing, 2016.


