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Abstract

A layered spherical medium is excited by a number of ex-
ternal electric dipoles. Boundary-value problems for the
involved individual and overall electromagnetic fields are
formulated. The direct scattering problem is solved by a T-
Matrix method. Explicit formulas for the far-field, the over-
all cross section and the total interaction cross sections are
derived. Some preliminary numerical results on the varia-
tions of these cross sections are presented.

1 Introduction

Electromagnetic scattering problems for fields generated by
more than one sources are motivated by a variety of applica-
tions over different disciplines, including, e.g. optical dif-
fusion [1], electromagnetic activity of the brain [2], cancer-
treatment techniques [3], and antenna design [4]. Besides,
stimulation by multiple incident fields has been used in in-
verse scattering problems for isotropic [5], layered [6], and
anisotropic [7] media.

In this work, we present a variant of the T-Matrix method
for a layered sphere, excited by N dipoles located in the
sphere’s exterior. Specifically, we distinguish the individ-
ual fields and the overall field by using suitable excitation
operators, and, in this way, express the overall field by co-
efficients given as sums of the individual scattering coeffi-
cients. This is particularly important in problems involving
spherical waves, since it aids the determination of the ad-
ditivity of the individual energy fluxes; such topics were
studied for light scattering by particles in [8] and [9] and
for acoustic waves in [10]. Furthermore, by introducing
boundary-transition vectors, we obtain a separable form for
the unknown coefficients, which allows the fast and effi-
cient computation of the overall and individual fields’ co-
efficients. This can also prove useful for inverse-problems
schemes.

2 Mathematical Formulation

We consider a spherical scatterer V of radius Ry, which
is divided by P — 1 spherical surfaces S, into P nested,
concentric spherical shells V, (p = 1,...,P). The first
P—1layers V, (i.e. Rpy1 <r<R,forp=1,...,P—1)
are homogeneous and isotropic and are characterized by
wavenumber k,, dielectric permittivity €, and magnetic

permeability t,. The core Vp (0 < r < Rp) can be per-
fectly electric conducting (PEC) or dielectric. The exterior
Vo = R*\ V of the scatterer is homogeneous and isotropic,
characterized by wavenumber kg, dielectric permittivity &
and magnetic permeability .

The scatterer is excited by N electric dipoles arbitrarily dis-
tributed in the sphere’s exterior Vy. The position of each
dipole with respect to the sphere’s center is identified by the
vector r;. These dipoles emit spherical waves, with their in-
dividual primary fields given by [11]

EY'(r) = iopoG(r,r;) - p;, 1)

where é(r,r ;) is the free-space dyadic Green’s function
and p; is the moment of each dipole.

Each individual primary field interacts with the scatterer,
generating individual secondary fields E$(r) in V,. The
individual total field in V), due to a source at r; is denoted

by Ej, (r). In Vo, it holds

Ej ;(r) = EF (r) + Eg5(r). @)
The superpositions of all individual primary fields in V; and
all individual total fields in V;, will be denoted by EP'(r) and

E, (r) and called 0-excitation primary field and overall field
of V,, respectively.

On the boundaries of layers V,, (p = 1,...,P —1), holds

PxE,_(r)=txE,(r), r=R, 3)

1
= FXVXE,_i(r)= ‘u—pf'x VXE,(r), r=R,. 4

The individual and overall fields in V; satisfy the Silver-
Miiller radiation condition. For a PEC core, we have

f’XEpfl(l’) :0, r=Rp, (5)
whereas for a dielectric core, (3)-(4) hold for p = P as well.

The individual far-fields g;(t) and overall far-field g(t) are
defined, respectively, by

Egi(r) =g

i(®)ho(kor) +O(r72), 1 — oo, (6)
Ey*(r) = g(f

Yho(kor) + O(r?), r — oo, (7



where hg is the O-order spherical Hankel function of the
first kind. Individual and overall scattering cross sections
are defined, respectively, by
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The interactions between individual fields generate addi-
tional energy fluxes, which are quantified by the total in-
teraction scattering cross section, defined as the difference
between the overall cross section and the sum of the indi-
vidual cross sections, and given by [10]

c'=0-Y o
j=1
2N—1 N
=2 L g/(F)-gy(F)ds(®).  (10)

3 Excitation Operators and Overall Super-
position Method

3.1 Excitation Operators

The individual primary fields are given by (1), where

~ iko 2n+1 (n—m)!
G = g & o 1) G
M (r, ko) M (rj, ko) + N3 (1, ko) NG (1, ko), 7> 7
M (r, ko) M3 (rj, ko) +Ni (1, ko)NJ (., ko), < 7,
1D

where r; = (rj,0;,0;), with r; > Ry, for j=1,...,N, the
position vectors of the dipoles, },, ,, ; denotes the triple sum
with respectton € N,m=0,...,n, and s € {e,0}, while &,
is the Neumann factor.

The individual fields in V), are expanded as [12]

o,ko y 2n+1 (n—m)!

Em
4 & (1) (npm)t "

Epj(r)=—
Msl (r7kl7) (a{;,pMsl (1‘/7 kO) + b{lng (rjak0)>

+ N_i (1‘7 kp) (C;J;,pNsl (rj7k0) + dﬁpNg (rjv ko))
+ M (r,kp) (@) M} (r;, ko) +B) M (r;, ko))

+N§(rakp) (Ei;,pNsl(rjka)""_dz,pNg(rjakO))‘| ‘Pj, (12)

where M, N with £ € {1,3} are the spherical vector wave
functions.

Now, we define the following excitation operators

ik 2n+1 (n—m)!

q _1%0
'%n,m,s(x) ar n(n+1) (n+m)!8m><
N
Y, (M (r) ko) b)), (13)
=
i — !
%?m7s(x) lkO 2f’l+1 (f’l m)

:Hn<n+1>< )1

Z N¢(r;,ko) - p;), (14)

where ¢ € {1,3}, and x = (xy,...,Xy) an arbitrary vector
of RV, Moreover, we introduce the notations

an,m,s = ‘/Kz,]m,s(cz)v Cg’{)’” s = '/Vl ((iﬁ)
.@rﬁm,s = ,/%l?nw (d£>7 -@lﬁm s %’imvs (d’li)

where x}, = (x] ,...,x} ) withx € {a,b,c,d} are the vec-

tors with components the coefficients of the individual sec-
ondary fields. Considering (11) and (12), we obtain the fol-
lowing expansions for the 0-excitation primary field

EP'(r) = iougx
Zn,m,s M53 (r7k0)'///nl,m7s(1) + N3( ko)‘/‘{’l Jm, s(l)

r>max{ri,...,ry}
ans ( ko)//r?ms( ) ( )‘/%z?;ns( )
r<min{r,...,ry}
(15)
where 1 denotes the N-dimensional vector (1,1,...,1).

Similarly, the expansion of the overall field of V), is

Ep(r):iwl‘lp Z |:M}( )(%ms+%nms)

Nsl(l‘,k )( nms+~@r[l)ms)+M3( k )("%Llfm,s—"_'@g,m,s)—i_
N3 k) (Gl Phins) |- (16)

3.2 Scattering Coefficients

Imposing successively the boundary conditions, we arrive
at

[%Pmi ‘%jim,ls} _T(H’w[ 0 A1 )}

%Prgi %rlz)r_n,ls " %Om ) '@2 m,s
(17)
[Cgf:’"i 911:’"1} —s{r { 0 Sl )} (18)
n,zZs @n,r_ns anms @nms ’

P—1 P—1 .. .
where T((H ) and SffH ) are the transition matrices

from layer Vj to layer Vp_1, given by

AT AT A (19)



for A € {T,S}. Matrices T} and S}, are the transition ma-
trices from layer V,,_ to layer V,, [12].

Applying the boundary conditions for each core type, we
get

'Qf:l(?mg = 07 gg,zn,s = K"‘%rim,s(l) (20)
Cgr?,m,x = O? gg,m,x = Ln%?m,s(l) (21)
where
wl Y
7\11’21"3 ’IE;;, PEC core
Kn=— 14 ,(0n) (22)
ke, dielectric  core
Tn,22
Ql
79'}"3 ’18:;, PEC core
Ly=—14 (05p) (23)
%, dielectric  core
Sn,22

with lez,Pflv'Qﬁ,Pfl’ for £ € {1,2}, being the components
of the boundary transition vectors

. T

T}’l,P*l(yP) = |:]/]lz(('§)l;;:| (T’(ZO_)P—U)’ (24)
2 ( ) T

Q. p-1(yp) = L{Z&i)] (S, (25)

while yp = kp_Rp and fn,fzn denote the Riccati-Bessel
functions.

Now, we are able to obtain directly the coefficients of the
individual fields. Precisely, it holds

bl o =Kl (m;), do=L,.A3, (n),  (26)

n,m,s

where
€j €j
m=-——_+— n=-——37> 27
T ME(rjko)-p;T T Ni(rjko)-p;

with e; being the vectors of the standard base of RN, We
note that for N = 1, and 6; = 0, Egs. (20), (21) are reduced
to (3.6) and (3.9) of [13].

Lastly, utilizing the asymptotic relations of the spherical
vector wave functions for r — oo [12], we obtain the far-
fields expressions

g(f) = opo Y /a(n+ D) (=i)" '

n,m,s

[K‘Ymn(ea ¢)%r?m\(1) + iLSWm(Ga ¢)</K173ms(1)] ’ (28)

g(F) = oo Y v/l 1)(=i)"" x

n,m,s

[Ksmn(97 ¢)'/%r?,m,s(ej) +iL3mn(97 ¢)‘/Kl,3m,s(ej)} ) (29)

with

Ksmn(97 ¢) = Kncsmn(ea ¢)7 Lsmn(9> ¢) = HJnBsmn(ea ¢)

where By, Cynn denote the vector spherical harmonics.

The overall, individual, and total interaction cross sections
are, respectively, given by

2 2 2
o="5 ¥ @t 1) (|Knttl (O + LA (O )
0 n,m,s
(30)
2n 2 2
0= %n;3(2n+ 1) (‘Kn%r?.m,s(ej” + |Ln'/%l?m,s(ej)| )
(€29)
r 4r
o= Y (2n+1)x
0 n,m,s
) N—1 N 5
|Kn‘ Re Z '%n,m,s(é./‘)%rim,s(év)
J=1 v=j+1
) N—-1 N
+ ‘]Ln| Re Z %?m,s(éj)'/min,s(év) ) (32)
j=1v=j+1

where €, =1—e;.
4 Numerical Results

In Figs. 1 and 2, we depict the variations of the overall
cross section ¢ and the total interaction cross section ¢*
versus kgR ;. The layered sphere has a dielectric core, with
R = 2R,, and relative parameters &) = 2,&o = 3, U, =
1.5, 4,2 = 2.5. Three different distributions of N = 4 ex-
citing dipoles lying on the z-axis are considered: r; =
(r1+d(j—1))R; with rj = 1.25 and d = 0.25,0.75,1.25,
respectively. Both cross sections follow a similar pattern:
for lower frequencies (kgR; < 1.5) they exhibit a smooth,
ascending behavior and the dipole distributions seem to
leave the cross-sections values unaffected, while for higher
frequencies (koR; > 1.5) oscillations appear which are ac-
companied by differences in the values for each distribu-
tion.

Furthermore, Table 1 shows the 100% percentages of the
ratios of the individual cross sections over the overall scat-
tering cross section. It is observed that, for kgR; > 1, the
contributions of each dipole to the overall cross section do
not exhibit large deviations. On the contrary, for kgR; < 1
the dipoles closer to the sphere (corresponding to o7, 07)
contribute significantly more than the dipoles away from
the sphere (corresponding to 03, 04).
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