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Abstract

A layered spherical medium is excited by a number of ex-
ternal electric dipoles. Boundary-value problems for the
involved individual and overall electromagnetic fields are
formulated. The direct scattering problem is solved by a T-
Matrix method. Explicit formulas for the far-field, the over-
all cross section and the total interaction cross sections are
derived. Some preliminary numerical results on the varia-
tions of these cross sections are presented.

1 Introduction

Electromagnetic scattering problems for fields generated by
more than one sources are motivated by a variety of applica-
tions over different disciplines, including, e.g. optical dif-
fusion [1], electromagnetic activity of the brain [2], cancer-
treatment techniques [3], and antenna design [4]. Besides,
stimulation by multiple incident fields has been used in in-
verse scattering problems for isotropic [5], layered [6], and
anisotropic [7] media.

In this work, we present a variant of the T-Matrix method
for a layered sphere, excited by N dipoles located in the
sphere’s exterior. Specifically, we distinguish the individ-
ual fields and the overall field by using suitable excitation
operators, and, in this way, express the overall field by co-
efficients given as sums of the individual scattering coeffi-
cients. This is particularly important in problems involving
spherical waves, since it aids the determination of the ad-
ditivity of the individual energy fluxes; such topics were
studied for light scattering by particles in [8] and [9] and
for acoustic waves in [10]. Furthermore, by introducing
boundary-transition vectors, we obtain a separable form for
the unknown coefficients, which allows the fast and effi-
cient computation of the overall and individual fields’ co-
efficients. This can also prove useful for inverse-problems
schemes.

2 Mathematical Formulation

We consider a spherical scatterer V of radius R1, which
is divided by P− 1 spherical surfaces Sp into P nested,
concentric spherical shells Vp (p = 1, . . . ,P). The first
P− 1 layers Vp (i.e. Rp+1 < r < Rp for p = 1, . . . ,P− 1)
are homogeneous and isotropic and are characterized by
wavenumber kp, dielectric permittivity εp and magnetic

permeability µp. The core VP (0 ≤ r < RP) can be per-
fectly electric conducting (PEC) or dielectric. The exterior
V0 = R3 \V of the scatterer is homogeneous and isotropic,
characterized by wavenumber k0, dielectric permittivity ε0
and magnetic permeability µ0.

The scatterer is excited by N electric dipoles arbitrarily dis-
tributed in the sphere’s exterior V0. The position of each
dipole with respect to the sphere’s center is identified by the
vector r j. These dipoles emit spherical waves, with their in-
dividual primary fields given by [11]

Epr
j (r) = iωµ0G̃(r,r j) ·p j, (1)

where G̃(r,r j) is the free-space dyadic Green’s function
and p j is the moment of each dipole.

Each individual primary field interacts with the scatterer,
generating individual secondary fields Esec

p, j(r) in Vp. The
individual total field in Vp due to a source at r j is denoted
by Et

p, j(r). In V0, it holds

Et
0, j(r) = Epr

j (r)+Esec
0, j(r). (2)

The superpositions of all individual primary fields in V0 and
all individual total fields in Vp will be denoted by Epr(r) and
Ep(r) and called 0-excitation primary field and overall field
of Vp, respectively.

On the boundaries of layers Vp (p = 1, . . . ,P−1), holds

r̂×Ep−1(r) = r̂×Ep(r), r = Rp (3)
1

µp−1
r̂×∇×Ep−1(r) =

1
µp

r̂×∇×Ep(r), r = Rp. (4)

The individual and overall fields in V0 satisfy the Silver-
Müller radiation condition. For a PEC core, we have

r̂×EP−1(r) = 0, r = RP, (5)

whereas for a dielectric core, (3)-(4) hold for p = P as well.

The individual far-fields g j(r̂) and overall far-field g(r̂) are
defined, respectively, by

Esec
0, j(r) = g j(r̂)h0(k0r)+O(r−2), r→ ∞, (6)

Esec
0 (r) = g(r̂)h0(k0r)+O(r2), r→ ∞, (7)



where h0 is the 0-order spherical Hankel function of the
first kind. Individual and overall scattering cross sections
are defined, respectively, by

σ j =
1
k2

0

∫
S2
|g j(r̂)|2ds(r̂), (8)

σ =
1
k2

0

∫
S2
|g(r̂)|2ds(r̂). (9)

The interactions between individual fields generate addi-
tional energy fluxes, which are quantified by the total in-
teraction scattering cross section, defined as the difference
between the overall cross section and the sum of the indi-
vidual cross sections, and given by [10]

σ
T = σ −

N

∑
j=1

σ j

=
2
k2

0

N−1

∑
j=1

N

∑
ν= j+1

∫
S2

g j(r̂) ·gν(r̂)ds(r̂). (10)

3 Excitation Operators and Overall Super-
position Method

3.1 Excitation Operators

The individual primary fields are given by (1), where

G̃(r,r j) =
ik0

4π
∑

n,m,s

2n+1
n(n+1)

(n−m)!
(n+m)!

εm×{
M3

s (r,k0)M1
s (r j,k0)+N3

s (r,k0)N1
s (r j,k0),r > r j

M1
s (r,k0)M3

s (r j,k0)+N1
s (r,k0)N3

s (r j,k0),r < r j,

(11)

where r j = (r j,θ j,φ j), with r j > R1, for j = 1, . . . ,N, the
position vectors of the dipoles, ∑n,m,s denotes the triple sum
with respect to n ∈N, m = 0, . . . ,n, and s ∈ {e,o}, while εm
is the Neumann factor.

The individual fields in Vp are expanded as [12]

Ep, j(r) =−
ωµpk0

4π
∑

n,m,s

2n+1
n(n+1)

(n−m)!
(n+m)!

εm×[
M1

s (r,kp)
(
a j

n,pM1
s (r j,k0)+b j

n,pM3
s (r j,k0)

)
+N1

s (r,kp)
(
c j

n,pN1
s (r j,k0)+d j

n,pN3
s (r j,k0)

)
+M3

s (r,kp)
(
ã j

n,pM1
s (r j,k0)+ b̃ j

n,pM3
s (r j,k0)

)
+N3

s (r,kp)
(
c̃ j

n,pN1
s (r j,k0)+ d̃ j

n,pN3
s (r j,k0)

)]
·p j, (12)

where M`
s,N`

s with ` ∈ {1,3} are the spherical vector wave
functions.

Now, we define the following excitation operators

M q
n,m,s(x) =

ik0

4π

2n+1
n(n+1)

(n−m)!
(n+m)!

εm×

N

∑
j=1

(x jMq
s (r j,k0) ·p j) , (13)

N q
n,m,s(x) =

ik0

4π

2n+1
n(n+1)

(n−m)!
(n+m)!

εm×

N

∑
j=1

(x jNq
s (r j,k0) ·p j) , (14)

where q ∈ {1,3}, and x = (x1, . . . ,xN) an arbitrary vector
of RN . Moreover, we introduce the notations

A p
n,m,s = M 1

n,m,s(a
p
n), ˜A p

n,m,s = M 1
n,m,s(ã

p
n)

Bp
n,m,s = M 3

n,m,s(b
p
n), B̃p

n,m,s = M 3
n,m,s(b̃

p
n)

C p
n,m,s = N 1

n,m,s(c
p
n), C̃ p

n,m,s = N 1
n,m,s(c̃

p
n)

D p
n,m,s = N 3

n,m,s(d
p
n), D̃ p

n,m,s = M 3
n,m,s(d̃

p
n)

where xp
n = (xp

1,n, . . . ,x
p
N,n) with x ∈ {a,b,c,d} are the vec-

tors with components the coefficients of the individual sec-
ondary fields. Considering (11) and (12), we obtain the fol-
lowing expansions for the 0-excitation primary field

Epr(r) = iωµ0×
∑n,m,s M3

s (r,k0)M
1
n,m,s(1)+N3

s (r,k0)N
1

n,m,s(1),
r > max{r1, . . . ,rN}

∑n,m,s M1
s (r,k0)M

3
n,m,s(1)+N1

s (r,k0)N
3

n,m,s(1),
r < min{r1, . . . ,rN}

(15)

where 1 denotes the N-dimensional vector (1,1, . . . ,1).
Similarly, the expansion of the overall field of Vp is

Ep(r) = iωµp ∑
n,m,s

[
M1

s (r,kp)
(
A p

n,m,s +Bp
n,m,s

)
+

N1
s (r,kp)

(
C p

n,m,s +D p
n,m,s

)
+M3

s (r,kp)
( ˜A p

n,m,s + B̃p
n,m,s

)
+

N3
s (r,kp)

(
C̃ p

n,m,s + D̃ p
n,m,s

)]
. (16)

3.2 Scattering Coefficients

Imposing successively the boundary conditions, we arrive
at[

A P−1
n,m,s BP−1

n,m,s
˜A P−1
n,m,s B̃P−1

n,m,s

]
= T(0→P−1)

n

[
0 M 3

n,m,s(1)
˜A 0
n,m,s B̃0

n,m,s

]
,

(17)[
C P−1

n,m,s DP−1
n,m,s

C̃ P−1
n,m,s D̃P−1

n,m,s

]
= S(0→P−1)

n

[
0 N 3

n,m,s(1)
C̃ 0

n,m,s D̃0
n,m,s

]
, (18)

where T(0→P−1)
n and S(0→P−1)

n are the transition matrices
from layer V0 to layer VP−1, given by

A(0→P−1)
n = AP−1

n AP−2
n · · · A1

n, (19)



for A ∈ {T,S}. Matrices Tp
n and Sp

n are the transition ma-
trices from layer Vp−1 to layer Vp [12].

Applying the boundary conditions for each core type, we
get

˜A 0
n,m,s = 0, B̃0

n,m,s =KnM
3
n,m,s(1) (20)

C̃ 0
n,m,s = 0, D̃0

n,m,s = LnN
3

n,m,s(1) (21)

where

Kn =−


Ψ1

n,P−1(yP)

Ψ2
n,P−1(yP)

, PEC core

T (0→P)
n,21

T (0→P)
n,22

, dielectric core
(22)

Ln =−


Ω1

n,P−1(yP)

Ω2
n,P−1(yP)

, PEC core

S(0→P)
n,21

S(0→P)
n,22

, dielectric core
(23)

with Ψ`
n,P−1,Ω

`
n,P−1, for ` ∈ {1,2}, being the components

of the boundary transition vectors

ΨΨΨn,P−1(yP) =

[
jn(yP)
hn(yP)

]T

(T(0→P−1)
n ), (24)

ΩΩΩn,P−1(yP) =

[
ĵn(yP)

ĥn(yP)

]T

(S(0→P−1)
n ), (25)

while yP = kP−1RP and ĵn, ĥn denote the Riccati-Bessel
functions.

Now, we are able to obtain directly the coefficients of the
individual fields. Precisely, it holds

b j
n,0 =KnM

3
n,m,s(m j), d j

n,0 = LnN
3

n,m,s(n j), (26)

where

m j =
e j

M3
s (r j,k0) ·p j

, n j =
e j

N3
s (r j,k0) ·p j

, (27)

with e j being the vectors of the standard base of RN . We
note that for N = 1, and θ j = 0, Eqs. (20), (21) are reduced
to (3.6) and (3.9) of [13].

Lastly, utilizing the asymptotic relations of the spherical
vector wave functions for r → ∞ [12], we obtain the far-
fields expressions

g(r̂) = ωµ0 ∑
n,m,s

√
n(n+1)(−i)n−1×[

Ksmn(θ ,φ)M
3
n,m,s(1)+ iLsmn(θ ,φ)N

3
n,m,s(1)

]
, (28)

g j(r̂) = ωµ0 ∑
n,m,s

√
n(n+1)(−i)n−1×[

Ksmn(θ ,φ)M
3
n,m,s(e j)+ iLsmn(θ ,φ)N

3
n,m,s(e j)

]
, (29)

with

Ksmn(θ ,φ) =KnCsmn(θ ,φ), Lsmn(θ ,φ) = LnBsmn(θ ,φ)

where Bsmn,Csmn denote the vector spherical harmonics.

The overall, individual, and total interaction cross sections
are, respectively, given by

σ =
2π

k2
0

∑
n,m,s

(2n+1)
(∣∣KnM

3
n,m,s(1)

∣∣2 + ∣∣LnN
3

n,m,s(1)
∣∣2)
(30)

σ j =
2π

k2
0

∑
n,m,s

(2n+1)
(∣∣KnM

3
n,m,s(e j)

∣∣2 + ∣∣LnN
3

n,m,s(e j)
∣∣2)

(31)

σ
T =

4π

k2
0

∑
n,m,s

(2n+1)×(
|Kn|2 Re

(
N−1

∑
j=1

N

∑
ν= j+1

M 3
n,m,s(ẽ j)M 3

n,m,s(ẽν)

)

+ |Ln|2 Re

(
N−1

∑
j=1

N

∑
ν= j+1

N 3
n,m,s(ẽ j)N 3

n,m,s(ẽν)

)
, (32)

where ẽ j = 1− e j.

4 Numerical Results

In Figs. 1 and 2, we depict the variations of the overall
cross section σ and the total interaction cross section σT

versus k0R1. The layered sphere has a dielectric core, with
R1 = 2R2, and relative parameters εr1 = 2,εr2 = 3,µr1 =
1.5,µr2 = 2.5. Three different distributions of N = 4 ex-
citing dipoles lying on the z-axis are considered: r j =
(r1 + d( j− 1))R1 with r1 = 1.25 and d = 0.25,0.75,1.25,
respectively. Both cross sections follow a similar pattern:
for lower frequencies (k0R1 ≤ 1.5) they exhibit a smooth,
ascending behavior and the dipole distributions seem to
leave the cross-sections values unaffected, while for higher
frequencies (k0R1 > 1.5) oscillations appear which are ac-
companied by differences in the values for each distribu-
tion.

Furthermore, Table 1 shows the 100% percentages of the
ratios of the individual cross sections over the overall scat-
tering cross section. It is observed that, for k0R1 > 1, the
contributions of each dipole to the overall cross section do
not exhibit large deviations. On the contrary, for k0R1 < 1
the dipoles closer to the sphere (corresponding to σ1,σ2)
contribute significantly more than the dipoles away from
the sphere (corresponding to σ3,σ4).
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Figure 2. Total interaction cross section σT versus k0R1 for
the same setup as Fig. 1.
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