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Abstract

The problem of surface waves in a regular open waveguide
of rectangular cross section is considered, which is reduced
to a boundary value problem for the longitudinal compo-
nents of the electromagnetic field in Sobolev spaces. To
determine the solution, a variational formulation of the pro-
blem is used. A technique based on the combination of a
version of the projection (Galerkin’s) method and parame-
ter shooting is proposed and applied for practical calculati-
ons.

1 Introduction

A significant class of vector problems of theoretical electro-
magnetics is the analysis of the electromagnetic wave pro-
pagation in open waveguides investigated by many authors
[1, 2, 3]. Open dielectric waveguides [4] constitute here an
important particular family. However, for open (unshiel-
ded) structures, and particularly for dielectric waveguides,
a sufficiently complete theory of wave propagation has not
been constructed so far. This paper presents the results of
numerical study of the spectrum of propagating surface wa-
ves of an open rectangular waveguide with asymptotic con-
ditions at infinity.

Note that in this paper we consider only the waves decaying
with respect to the distance from the waveguide (imposing
the corresponding conditions at infinity). Other types of
waves are not taken into account.

2 Statement of the problem

Consider three-dimensional space R3 with the Cartesian
coordinate system Oxyz filled with an isotropic medium
without sources (vacuum) having the permittivity ε̃ = ε0 ≡
const and permeability µ̃ = µ0 equivconst. We will con-
sider a mathematical model of the wave propagation in a
regular (along the Oz-axis) waveguide structure, the cross
section of which by the plane z = const forms a bounded
region Ω,

Ω := {x = (x,y) : (x) : |x|< a, |y|< a}

The nonhomogeneous dielectric waveguide under study is
filled with a homogeneous isotropic material having the
permittivity and permeability ε̃ = ε(x,y), Imε = 0, and µ̃ =

µ(x), Im µ = 0, respectively. We assume that ε(x), µ(x) ∈
C1(Ω) and minε > ε0, min µ > µ0.

In the entire space, the permittivity and permeability are
governed by the relations

ε̃ =

{
ε(x), x ∈Ω,

ε0, x ∈ R2 \Ω,
µ̃ =

{
µ(x), x ∈Ω,

µ0, x ∈ R2 \Ω.
(1)

Determination of electromagnetic waves in a waveguide is
the problem of finding nontrivial propagating wave solu-
tions to the homogeneous system of Maxwell’s equations,
i.e., the solutions with dependence eiγz on coordinate z [4],{

rotH =−iωε̃E,
rotE = iωµ̃H,

(2)

and

E = (Ex(x) ex +Ey(x) ey +Ez(x) ez)eiγz, (3)

H = (Hx(x) ex +Hy(x) ey +Hz(x) ez)eiγz, (4)

the transmission conditions for the tangential electric and
magnetic field components on the surfaces of the "breaks"
of permittivity and permeability,

[Eτ ]|Ω = 0, [Hτ ]|Ω = 0, (5)

and the radiation condition at infinity: the electromagnetic

field E, H→ O
(

1√
r

)
, r→ ∞, r =

√
x2 + y2.

It is known [5, 6, 7] that the field in a waveguide can be
represented using two scalar functions:

Π := Ez(x), Φ := Hz(x).

The problem of the determination of electromagnetic sur-
face waves propagating in the inhomogeneous waveguide
of rectangular cross-section consists in finding such γ ∈ R
for which there exist nontrivial solutions of the following
system of differential equations

∆Π− κ̃
2
Π =−

(
∇ε̃

ε̃
+

ω2

κ̃2 ∇ε̃ µ̃

)
∇Π− γω

ε̃κ̃2 J (ε̃ µ̃,Φ) ,

∆Φ− κ̃
2
Φ =−

(
∇µ̃

µ̃
+

ω2

κ̃2 ∇ε̃ µ̃

)
∇Φ+

γω

µ̃κ̃2 J (ε̃ µ̃,Π) ,



where κ̃2
0 = γ2−ω2ε̃ µ̃ and

J (u,v) :=
∂u
∂x

∂v
∂y
− ∂u

∂y
∂v
∂x

,

satisfying the boundary conditions

[Π]|
Ω
= 0, [Φ]|

Ω
= 0,

γ

[
1

κ̃2
∂Φ

∂τ

]∣∣∣∣
Ω

+

[
ωε̃

κ̃2
∂Π

∂n

]∣∣∣∣
Ω

= 0,

γ

[
1

κ̃2
∂Π

∂τ

]∣∣∣∣
Ω

−
[

ωµ̃

κ̃2
∂Φ

∂n

]∣∣∣∣
Ω

= 0,

the energy boundedness condition in Ω∫
Ω

(
|∇Π|2 + |∇Φ|2 + |Π|2 + |Φ|2

)
dx < ∞,

and the asymptotic radiation condition at infinity:

∂Π

∂n

∣∣∣∣
Ω∞

+ κ0Π|
Ω∞

= 0,
∂Φ

∂n

∣∣∣∣
Ω∞

+ κ0Φ|
Ω∞

= 0, (6)

where κ2
0 = γ2 − ω2ε0µ0 and Ω∞ :=

{(x,y) : |x|< b, |y|< b} is the boundary of a large
enough domain Ω∞ such that condition (6) is satisfied.

Remark 1. The solution of the latter system in free space is
determined by the following series

Π(r) =
∞

∑
m=1

Cm cosmφ Km(κ0r), x ∈ R2 \Ω,

Φ(r) =
∞

∑
m=1

C̃m cosmφ Km(κ0r), x ∈ R2 \Ω,

where Km is a modified Bessel function (Mcdonald
function), r =

√
x2 + y2, φ = arctan

y
x
, Cm and C̃m are con-

stant. For sufficiently large values of the argument r, the
following asymptotics is valid [8]

u(r)
u′r

=− 1
κ0

+O
(

1
r

)
.

The resulting asymptotics allows one to introduce asympto-
tic radiation conditions.

3 Numerical Method and Results

The weak formulation [7] of the problem under considera-
tion leads to the following variational relation:∫

Ω∞

(ε̃Πu+ µ̃Φv)dx+
∫

Ω∞

ε̃∇Π∇u+ µ̃∇Φ∇v
κ̃2 dx+

+
∫

Ω∞

ε0Πu+µ0Φv
κ0

∣∣∣∣
Ω∞

dτ+

+
∫
Ω

γω

κ̃4 (vJ (µ̃,Π)− ε̃uJ (ε̃ µ̃,Φ))dx−

−
∫
Ω

γω
εµ− ε0µ0

κ2
0 κ2

(
∂Π

∂τ
v− ∂Φ

∂τ
u
)∣∣∣∣

Ω

dτ = 0. (7)

Using the projection method we reduce the addressed vari-
ational relation to a system of algebraic equations.

We split Ω∞ into n identical squares with sidelength h0 and
take bilinear functions with rectangular supports as basis
functions ψi on Ω∞. The support Ψi of the basis function
ψi is the union of four squares with a common point x0

i . In
addition, we assume that the centers x0

i of the base elements
Ψi lie inside the region Ω∞, so that x0

i ∈Ω∞,

ψi(x) = ψ
x
i (x)ψ

y
i (y), (8)

and

ψ
x
i (x) =



x− x0
i +h
h

, x ∈ (x0
i −h,x0

i ),

x0
i +h− x

h
, x ∈ (x0

i ,x
0
i +h),

0, x /∈ (x0
i −h,x0

i +h),

(9)

ψ
y
i (y) =



y− y0
i +h
h

, y ∈ (y0
i −h,y0

i ),

y0
i +h− y

h
, y ∈ (y0

i ,y
0
i +h),

0, y /∈ (y0
i −h,y0

i +h).

(10)

Such basis functions take into account the physical nature
of the problem under consideration.

We look for an approximate solution as a finte sum with
real coefficients αi and β j such that

Π =
n+1

∑
i=1

αiψi, Φ =
n+1

∑
j=1

β jψ j. (11)

Substituting functions Π and Φ with representations (11)
into the variational relation, we obtain a system of linear
equations with respect to αi and β j (for a fixed value of γ)

A(γ)x = 0, (12)

where matrices A(γ) and x have the form

A =



A1,1
ee · · · A1,n+1

ee A1,1
em · · · A1,n+1

em
...

. . .
...

...
. . .

...
An+1,1

ee · · · An+1,n+1
ee An+1,1

em · · · An+1,n+1
em

A1,1
me · · · A1,n+1

me A1,1
mm · · · A1,n+1

mm
...

. . .
...

...
. . .

...
An+1,1

me · · · An+1,n+1
me An+1,1

mm · · · An+1,n+1
mm


,

and
x = (α1 · · · αn+1 β1 · · · βn+1)

T ,

where

Ai, j
ee =

∫
Ψi

ε̃ψiψ jdx+
∫
Ψi

ε̃∇ψi∇ψ j

κ̃2 dx+

+
∫

Ω∞

ε0

κ0
ψiψ j

∣∣∣∣
Ω∞

dτ, i, j = 1,n+1,



Ai, j
em =

∫
Ψi

γω

κ̃4 ψ jJ (ε̃ µ̃,ψi)dx−

−
∫

Ω∞

γω
εµ− ε0µ0

κ2κ2
0

∂ψi

∂τ
ψ j

∣∣∣∣
Ω

dτ, i= 1,n+1, j = 1,n+1,

Ai, j
me =−

∫
Ψi

γω

κ̃4 ψ jJ (ε̃ µ̃,ψi)dx+

+
∫

Ω∞

γω
εµ− ε0µ0

κ2κ2
0

∂ψi

∂τ
ψ j

∣∣∣∣
Ω

dτ, i= 1,n+1, j = 1,n+1,

Ai, j
mm =

∫
Ψi

ε̃ψiψ jdx+
∫
Ψi

ε̃∇ψi∇ψ j

κ̃2 dx+

+
∫

Ω∞

ε0

κ0
ψiψ j

∣∣∣∣
Ω∞

dτ, i, j = 1,n+1.

Thus A(γ) is a 2(n+1)×2(n+1) matrix.

Denote by ∆(γ) the determinant of A(γ),

∆(γ) = detA(γ). (13)

Definition of approximate solution. If there exists γ = γ̃

such that ∆(γ̃) = 0, then γ̃ is an approximate eigenvalue of
the problem. In other words, if an interval [γ, γ] is such that
∆(γ)×∆(γ) < 0, then this means that there exists γ = γ̃ ∈
[γ, γ] which is a propagation constant of problem (2)–(5).
This value can be calculated with any prescribed accuracy.

As a model problem, consider the following set of parame-
ters: a = 1, ε = 9, µ = 1, ε0 = µ0 = 1. Dispersion curves
(graphs of the dependence of normalized propagation con-
stant γ/ω on frequency ω) are shown in the figure.

Figure 1. Dispersion curves.

Having fixed the frequency ω = 0.5, let us study the change
in the value of the first normalized propagation constant
γ/ω (indicated by the red dot in Fig. 1) from the num-
ber of base elements (NBE). The results are shown in the
following table.

We see that with an increase in NBE, the accuracy of the ei-
genvalue calculation is enhanced (the result becomes more
precise).

NBE 441 961 1681 3721 6561 10201
γ/ω 2.755 2.738 2.751 2.749 2.748 2.748

γ 1.378 1.369 1.376 1.375 1.374 1.374

Table 1. Normalized eigenvalues of the problem with a
change in the NBE.

4 Conclusion

The developed numerical method is efficient for the ana-
lysis of the wave propagation in open dielectric wavegui-
des filled with inhomogeneous media and can be applied to
calculating propagation constants of polarized waves in cy-
lindrical circular waveguides and waveguides having non-
coordinate cross-sections.
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