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Nonlinear TE-polarized electromagnetic waves in a metal-dielectric plane waveguide
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Abstract

The paper treats a problem of TE-wave propagation in a

shielded dielectric layer. The permittivity of the layer is de-

scribed by Kerr nonlinearity. The propagation problem is

reduced to a nonlinear boundary eigenvalue problem for an

ordinary differential equation. Spectral parameters of the

problem are propagation constants of the waveguide. For

the determination of approximate eigenvalues an approach

is proposed based on the earlier developed Integral Disper-

sion Equation Method. Numerical results are presented.

1 Introduction

Analysis of the wave propagation in planar dielectric

waveguides constitutes an important class of electromag-

netic problems. A dielectric layer is the simplest type

of such guiding structures. At the same time, such a

structure is widely used in practice (planar optical waveg-

uides) [1, 2, 3].

In this paper we investigate electromagnetic TE-wave prop-

agation in a shielded nonlinear dielectric layer. The nonlin-

earity in the waveguide is described by the Kerr law [4].

Problems of TE-waves propagation in a layer with Kerr

nonlinearities were considered in strict electromagnetic

statement in [5] and investigated in [6, 7, 8, 9].

The physical setting under study can be stated as a nonlin-

ear boundary eigenvalue problem for an ordinary differen-

tial equation. One of the ways to investigate this problem

is to derive an equation with respect to the spectral param-

eter. This equation is called the dispersion equation. The

Integral Dispersion Equation Method was suggested for the

first time in [7]. Using the obtained dispersion equation we

can calculate approximate solutions of the eigenvalue prob-

lem. In addition, this approach allows us to find eigenvalues

of the problem that can not be obtained using any perturba-

tion method [9, 10].

Numerical results are also presented for a broad set of pa-

rameters and different values of the nonlinearity coefficient.

2 Statement of the problem

Consider three-dimensional space R3 equipped with Carte-

sian coordinate system Oxyz. The space is filled with an

isotropic source-free nonmagnetic medium having permit-

tivity ε2 ≡ const, ε2 > 0. We consider electromagnetic

waves propagating through a nonlinear dielectric layer lo-

cated between two half-spaces x < 0 and x > h:

Σ := {(x,y,z) : 0 6 x 6 h} .

The boundaries x = 0, x = h are the projections of the sur-

faces of perfectly conducting screens. The geometry of the

problem is shown in Fig. 1.

The waveguide Σ is filled with a nonlinear isotropic non-

magnetic medium characterised by the permittivity ε +
α|E|2, where ε > 0, α > 0 are constants.
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Figure 1. Geometry of the problem.

We assume that the fields depend harmonically on time as

exp(−iωt), where ω > 0 is the circular frequency.

Determination of normal TE-polarized waves reduces to

finding nontrivial running-wave solutions of the homoge-

neous system of Maxwell’s equations depending on the

coordinate z along which the structure is regular in the

form eiγz,

{

rotH =−iω
(

ε +α|E|2
)

E,

rotE = iωH,
(1)

E =
(

0, Ey(x)e
iγz
, 0

)

, H =
(

Hx(x)e
iγz
, 0, Hz(x)e

iγz
)

, (2)



with the boundary conditions for the tangential electric

component on the perfectly conducting screens (x = 0 and

x = h)

Ey(0) = 0, Ey(h) = 0. (3)

Note that the problem on normal waves is an eigenvalue

problem for the Maxwell equations with spectral parameter

γ which is the propagation constant of the waveguide.

Substituting (2) into system (1), we obtain











iγHx −H ′
z =−iω

(

ε +αE2
y

)

Ey,

−iγEy = iωHx,

E ′
y = iωHz,

(4)

From (4) we have

Hx =− γ

ω
Ey, Hz =−

iE ′
y

ω
. (5)

The field in the waveguide can be represented using one

scalar function

u := Ey(x). (6)

We assume that u ∈C2(0,h)∩C1 [0,h] .

The propagation problem is reduced to the following eigen-

value problem for the tangential electric field component u:

find γ ∈ R such that there exist nontrivial solutions of the

differential equation

u′′−
(

γ2 −ω2ε
)

u+αω2u3
, 0 ≤ x ≤ h, (7)

satisfying the boundary conditions

u(0) = 0, u(h) = 0. (8)

We introduce the additional boundary condition

u′(0) = A, A > 0. (9)

3 Numerical method

First let us introduce the auxiliary parameter λ = γ2 −
ω2ε > 0. Multiplying equation (7) by u′(x) and integrating,

we obtain

(u′)2 −λ u2+
αω2

2
u4 =C0,

where C0 is a constant. Using conditions (8), (9), we find

(u′(0))2 = A2
> 0,A2 =C0.

This implies that

(u′)2 −λ u2 +
αω2

2
u4 = A2

. (10)

From the latter equation we obtain

u′ =±

√

A2 +λ u2 − αω2

2
u4. (11)

Introduce the following notation

z1 =
λ +

√
λ 2 + 2αω2A2

αω2
, z2 =

λ −
√

λ 2 + 2αω2A2

αω2
.

Then

A2 +λ u2 − αω2

2
u4 =−αω2

2

(

u2 − z1

)(

u2 − z2

)

. (12)

Integrating (11), we get the integral dispersion equation in

the form

N

√
z1

∫

−√
z1

du
√

A2 +λ u2 − αω2

2
u4

= h. (13)

It follows from

z1z2 =− 2A2

αω2
,

that

2
√

2

π
2

∫

0

√
z1dt

√

αω2z2
1 sin2 t + 2A2

=
h

N
. (14)

The result is

∆(γ) :=

π
2

∫

0

dt
√

αω2z2 sin2 t + 2A2
− h

2
√

2N
√

z
= 0, (15)

where N = 1,2, . . .,

z =
γ2 −ω2ε +

√

(

γ2 −ω2ε
)

+ 2αω2A2

αω2
.

Let γ = γ̃ be such that ∆
(

γ
)

= 0. This yields that γ̃ is a

solution (propagation constant) of the problem (7)–(9).

Theorem 1 Suppose
[

γ,γ
]

is a segment such that

∆
(

γ
)

∆
(

γ
)

< 0. Then there exists at least one propagation

constant (one eigenvalue) of the problem (7)–(9) γ̃ ∈
(

γ,γ
)

.

Note that the condition ∆
(

γ
)

∆
(

γ
)

< 0 is only a sufficient

condition for the existence of a propagation constant of the

problem (7)–(9) γ̃ ∈
(

γ,γ
)

.



4 Numerical results

Figures 2–4 display the calculated propagation constants

for the problem of the TE-polarized wave propagation in a

nonlinear shielded dielectric layer are shown. The follow-

ing values of parameters are used in calculations: ε = 4,

A = 3, h = 3 mm, and N = 1,7.

Numerical analysis of the behavior of dispersion curves

(graphs of the dependence of
γ
ω on frequency ω) is per-

formed for different values of coefficient α . Blue and red

curves correspond, respectively, to the nonlinear and linear

cases (at α = 0). All real solutions of the linear problem

must satisfy the condition 0 < γ <
√

ω2ε . The boundary

γ =
√

ω2ε in Figs. 2–4 is marked by a dashed horizontal

line.

Figure 2. Dispersion curves: α = 0.05 V−2.

Figure 3. Dispersion curves: α = 0.1 V−2.

Figure 4. Dispersion curves: α = 0.2 V−2.
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