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Abstract

The paper addresses a problem of the TE-wave propagation
in the Goubau line. The propagation problem is reduced
to a transmission eigenvalue problem for an ordinary dif-
ferential equation. Spectral parameters of the problem are
propagation constants of the waveguide. For the determi-
nation of approximate eigenvalues a version of the shooting
method is proposed specifically developed for this class of
problems. The method allows one to numerically find prop-
agating, evanescent, and complex surface and leaky waves.
Numerical results illustrating the method are presented.

1 Introduction

In this paper the electromagnetic TE-wave propagation in
a conducting cylinder covered by a concentric dielectric
layer, the Goubau line (GL), is investigated. GL is the sim-
plest type of an open metal-dielectric waveguide structures.
The spectrum of symmetric surface modes was investigated
in [1, 2, 3].

Complex waves in GL has been an object of intensive recent
studies [4]–[9]. The results of [6]–[8] aimed at substantia-
tion of the occurrence of complex waves in GL are largerly
based on a theoretical model [4] involving rigorous proof
of the existence of complex waves. The approach set forth
in[4] and detalized in [5] employs analysis of the function
of several complex variables entering the dispersion equa-
tion for the complex wave spectra using Rouche’s theorem.
In [8] the existence of complex waves in GL is validated
and the spectrum of surface complex waves is calculated as
(regular) perturbations of the wave propagation constants
with respect to the real parameter, imaginary part of the per-
mittivity filling the GL covering dielectric layer. The tech-
nique employs numerical solution of the Cauchy problem
obtained using the parameter-differentiation method. In [9]
the existence of complex waves is demonstrated in a GL
with a covering layer of metamaterial.

We reduce the electromagnetic problem under study to an
eigenvalue problem where the spectral parameter is the
propagation constant of TE-waves. A numerical method
for solving the problem is proposed which is based on the
solution of an auxiliary Cauchy problem. A similar tech-
nique was used to study the propagation of symmetric hy-
brid electromagnetic waves in nonlinear waveguide struc-
tures [10].

Correct classification of waves in GL is an important prob-
lem in the waveguide theory. The developed method al-
lows one to classify electromagnetic TE-waves in GL and
identify leaky and surface (depending on the condition at
infinity) and propagating, evanescent, and complex waves
(depending on the character of the propagation constant)
[11, 12, 13]. In addition, using the developed method it is
possible to calculate waves in GL filled with different types
of dielectric (having constant real permittivity, inhomoge-
neous and lossy, and metamaterials).

2 Statement of the problem

Consider a perfectly conducting cylinder covered by a con-
centric dielectric layer. The waveguide

Σ := {(ρ ,ϕ) : r0 6 ρ 6 r, 0 6 ϕ < 2π}

is a GL (in the cylindrical coordinate system Oρϕz), where
r0 and r are the radii of the internal and external cylin-
ders, respectively. At the boundary ρ = r0 there is a per-
fectly conducted screen. The concentric layer is filled with
an anisotropic nonmagnetic medium. The external domain
ρ > r0 is filled with isotropic medium having constant per-
mittivity εcε0, where ε0 > 0 is the permittivity of vacuum.
We assume that µ = µ0 everywhere, where µ0 > 0 is the
permeability of vacuum.

We consider TE-polarized electromagnetic waves
(E,H)e−iωt propagating along GL Σ with a generat-
ing line parallel to the axis Oz in R3, where ω > 0 is a
circular frequency; the complex amplitudes

E =
(
0, Eϕ(ρ)e

iγz
, 0

)
, H =

(
Hρ(ρ)e

iγz
, 0, Hz(ρ)e

iγz
)
,

and γ is the spectral parameter (propagation constant).

Maxwell’s equations have the form

∇×H =−iωε0ε̃E, ∇×E = iωµ0H. (1)

Thus complex amplitudes E, H satisfy equations (1), the
boundary condition for the tangential electric field compo-
nent on the perfectly conducting screen

Eϕ

∣∣
ρ=r0

= 0,

and the transmission conditions for the tangential electric
and magnetic field components on the discontinuity surface
of permittivity (ρ = r)

[Eϕ ]
∣∣
ρ=r

= 0, [Hz]|ρ=r = 0,



where [ f ]|x0
= lim

x→x0−0
f (x)− lim

x→x0+0
f (x).

The radiation condition at infinity will be described below.

The permittivity in the whole space have the form

ε̃ =

{
ε(ρ), r0 6 ρ 6 r,

εc, ρ > r,

where ε(ρ) is a continuous functions on segment [r0,r], i.e.
ε(ρ) ∈C[r0,r].

The problem of determining surface waves is an eigenvalue
problem for the Maxwell equations with spectral parameter
γ which is the wave propagation constant.

The normal wave field in the waveguide can be represented
using one scalar function u := Eϕ(ρ). Thus, the problem
is reduced to finding tangential component u of the electric
field. Everywhere below ( · )′ means differentiation with
respect to ρ .

The following classification of waves is known [11, 12, 13].

Definition 1 The propagating wave is characterised by

real parameter γ .

Definition 2 The evanescent wave is characterised by pure

imaginary parameter γ .

Definition 3 The complex wave is characterised by com-

plex parameter γ such that ℜγℑγ 6= 0.

Note that propagation constant γ characterises the behavior
of a wave (propagating, evanescent, or complex) in the z-
direction.

Definition 4 The surface wave satisfies the condition

u(ρ)→ 0, ρ → ∞. (2)

Definition 5 The leaky wave satisfies the condition

u(ρ)→ ∞, ρ → ∞. (3)

It follows that the classification of waves as surface or leaky
depends on the behaviour in the ρ-direction at infinity.

Denote k2
0 := ω2µ0ε0. The propagation problem is reduced

to the following eigenvalue problem for the tangential elec-
tric field component u: find γ ∈C such that there exist non-
trivial solutions of the differential equation

u′′+ρ−1u′−ρ−2u+
(
k2

0ε̃ − γ2
)

u = 0, (4)

satisfying the boundary conditions

u|ρ=r0
= 0, (5)

and the transmission conditions

[u]|ρ=r = 0,
[
u′
]∣∣

ρ=r
= 0. (6)

For ρ > r, we obtain ε̃ = εc; then from (4) we deduce the
equation

u′′+ρ−1u′−ρ−2u−κ2u = 0. (7)

In accordance with the condition at infinity (2) or (3) (see.
definitions 4 and 5), we choose a solution of equation (7)
for surface waves

u =C1K1(κρ), ρ > r, (8)

and for leaky waves

u =C2I1(κρ), ρ > r, (9)

respectively, where κ =
√

γ2 − k2
0εc and ℜκ > 0, C1, C2

are the constants, and Km and Im are the modified Bessel
functions (Macdonald and Infeld functions) [14].

For r0 < ρ < r, we have ε̃ = ε(ρ); thus from (4) we obtain
the equation

u′′+ρ−1u′−ρ−2u+
(
k2

0ε(ρ)− γ2
)

u = 0. (10)

Definition 6 γ ∈ C is called propagation constant of the

problem if there exists nontrivial solution u of equation (10)
for r0 < ρ < r, satisfying for ρ > r solutions (8) for surface

waves and (9) for leaky waves, respectively, boundary con-

dition (5), and transmission conditions (6).

3 Numerical method

Let us consider the Cauchy problem for equation (10) with
the initial conditions

u(r0) := 0, u′ (r0) := A, (11)

where A is a known real constant.

Now suppose that the Cauchy problem (10), (11) is globally
and uniquely solvable on segment [r0,r] for given values
r0, r, and its solution continuously depends on parameter γ .
Using the transmission condition on the boundary ρ = r (6),
one can obtain the dispersion equation for surface waves

∆S (γ)≡ K1(κr)u′(r)+

+
(
κK0(κr)+ r−1K1(κr)

)
u(r) = 0,

and the dispersion equation for leaky waves

∆L (γ)≡ I1(κr)u′(r)−

−
(
κI0(κr)− r−1I1(κr)

)
u(r) = 0,



where quantities u(r) and u′(r) are obtained from the solu-
tion to the Cauchy problem (10), (11).

Let γ = α + iβ . Then we can write the dispersion equations
for surface waves

{
∆1 (α,β ) := ℜ∆S (γ) = 0,

∆2 (α,β ) := ℑ∆S (γ) = 0,
(12)

and for leaky waves
{

∆3 (α,β ) := ℜ∆L (γ) = 0,

∆4 (α,β ) := ℑ∆L (γ) = 0,
(13)

as systems of real equations for determining parameters α
and β .

Using the shooting method, we will solve numerically sys-
tem of equations (12) to determine a pair (α, β ). The so-
lution to each equation of system (12) is a curve on the
plane Oαβ . Then we determine points of intersections of
the curves; these points are approximate eigenvalues of the
problem.

Introduce a grid

{(
α(i)

,β ( j)
)

: α(i) = a1 + iτ1, β ( j) = b1 + iτ2,

i = 0,n, τ1 =
a2 − a1

n
, j = 0,m, τ2 =

b2 − b1

m

}

with steps τ1 > 0, τ2 > 0, where a1, a2, b1, b2 are real fixed
constants. Decreasing steps τ1 and τ2, we can get arbitrarily
accurate solutions.

Solving the Cauchy problem (10), (11) for each grid point,
one obtains u(r;α(i),β ( j)

)
and u′

(
r;α(i),β ( j)

)
, i = 0,n,

j = 0,m. Note that solution u(r;α,β ) is continuously de-
pendent on parameters α and β . This means that if

∆1
(
α(i)

,β ( j)
)
∆1

(
α(i)

,β ( j+1)
)
6 0,

then there exists a point
(
α(i), β̂

)
in the plane Oαβ , where

β̂ ∈
(
β ( j),β ( j+1)

)
, such that

∆1

(
α(i)

, β̂
)
= 0.

Likewise, if

∆1
(
α(i)

,β ( j)
)
∆1

(
α(i+1)

,β ( j)
)
6 0,

then there exists a point
(
α̂,β ( j)

)
in the plane Oαβ , where

α̂ ∈
(
α(i),α(i+1)

)
, such that

∆1

(
α̂,β ( j)

)
= 0.

Continuing in the same manner, one finds a set of pairs
(α(k),β (k)), where k = 0, p and p is the number of the deter-
mined points. This set is presented as a curve in the plane
Oαβ (the blue curve in Fig. 1).

Applying the same approach to the second equation of (12),
one obtains another curve in the plane Oαβ (the green
curve in Fig. 1). This curve is an approximate solution
of the equation ∆2

(
α,β

)
= 0. It is clear that the intersec-

tion point of the curves
(
α̂, β̂

)
(the red point in Fig. 1) is

an approximate solution of system (12). This implies that

γ̂ = α̂ + iβ̂ is a solution of the problem (a propagation con-

stant of surface TE-wave). If α̂ = 0 or β̂ = 0, we obtain
an evanescent or propagating surface wave, respectively. In

the case α̂β̂ 6= 0, propagation constant γ̂ corresponds to a
complex surface wave.

In the same way, we can obtain approximate solutions of
system (13).

(k)

(k)

Figure 1. Dispersion curves: blue and green curves are
solutions of, respectively, the first and the second equations
of (12); red point is a solution of system (12).

4 Numerical results

Figures 2 and 3 demonstrate the results of calculating the
propagation constants for the problem of the TE-polarized
wave propagation in GL filled with an inhomogeneous di-
electric. Propagating, evanescent surface TE-waves and
propagating, evanescent, complex leaky TE-waves are de-
termined numerically using the algorithm described above.

The following values of parameters are used in calculations:
εc = 1, ε(ρ) = 4+ 2

ρ , ε0 = 1, µ0 = 1, A = 1, ω = 1, r0 = 2,
r = 4, a1 =−3, a2 = 3, b1 =−3, b2 = 3, τ1 = τ2 = 0.025.

In Fig. 2 the solution to the problem of surface TE-waves
in waveguide Σ is presented. The blue and green curves are
solutions of, respectively, the first and the second equations
of (12); the red intersection points correspond to the propa-
gating surface TE-waves; the purple intersection points cor-
respond to evanescent surface TE-waves.

In Fig. 3 the solution to the problem of leaky TE-waves in
GL Σ is presented. The character of the curves is the same;



the red intersection points correspond to the propagating
leaky, the purple to the evanescent leaky, and the yellow to
the complex leaky TE-waves.

Figure 2. Numerical solution of the system (12).

Figure 3. Numerical solution of the system (13).

5 Conclusion

The numerical method developed in this study comple-
ments the available techniques for analytical determination
and calculation of the complex mode spectra in GL. The
proposed approach enables one in particular to determine
several different types of waves in GL using the same nu-
merical algorithm which is a result important in various ap-
plications. The developed method can be generalized to
GLs with lossy and multi-layer dielectric covers.
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