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Abstract

In this work, we study electromagnetic waves propagating
in an inhomogeneous waveguide of circular cross section
filled with a chiral medium. For the numerical solution of
the problem, a Galerkin method is proposed. The results
of numerical study of the spectrum of propagating surface
waves of the considered open waveguide are presented.

1 Introduction

Recently, in connection with the progress in the field of po-
lymer technologies, new synthesized chiral materials have
appeared, which served as an incentive for research on the
relevant problems of the wave propagation theory. The ana-
lysis of waves in chiral media is performed in [1]–[5] to
name the few. One of the most significant properties has
been revealed that chirality exhibits itself when the system
of waves in a waveguide with a chirality parameter equal to
zero degenerates. In an infinite medium, chirality removes
the degeneracy that exists between plane waves with diffe-
rent directions of linear polarization. In addition, normal
waves in a chiral waveguide acquire different propagation
constants and definite polarization states.

The waves in open waveguide structures filled with chiral
media was studied using the method of operator pencils and
operator-valued functions. proposed by Smirnov and Smol-
kin in [6]–[9] where various results of analytical and nume-
rical investigations of the spectrum of propagating surface
waves are presented.

2 Statement of the problem

Consider three-dimensional space R3 equipped with cylin-
drical coordinate system Oρϕz and filled with an isotropic
source-free medium having permittivity ε0 and permeabi-
lity µ0 (vacuum).

Consider the determination of polarized surface waves in
a cylindrical circular waveguide. The cross-section of the
waveguide will be either a circle of radius r > 0 or a ring
with internal radius r0 > 0 (perfectly conducting cylinder)
and external radius r > r0. We will consider both sructures
simultaneously setting in the first case r0 = 0. The geome-
try of the problem is shown in Fig. 1.

Figure 1. Geometry of the problem.

Determination of electromagnetic waves in a waveguide is
the problem of finding nontrivial propagating wave solu-
tions to the homogeneous system of Maxwell’s equations,
i.e., the solutions with dependence eiγz on coordinate z [10],{

rotH =−iωε̃E−ωχ̃H,

rotE = iωµ̃H−ωχ̃E,
(1)

and

E =
(
Eρ(ρ) eρ +Eϕ(ρ) eϕ +Ez(ρ) ez

)
eiγz, (2)

H =
(
Hρ(ρ) eρ +Hϕ(ρ) eϕ +Hz(ρ) ez

)
eiγz, (3)

with the boundary conditions for the tangential electric field
components on perfectly conducting surfaces,

Eϕ

∣∣
ρ=r0

= 0, Ez|ρ=r0
= 0, (4)

the transmission conditions for the tangential electric and
magnetic field components on the surfaces of "breaks" of
permittivity, permeability and chirality,

[Eϕ ]
∣∣
ρ=r = 0, [Ez]|ρ=r = 0,

[Hϕ ]
∣∣
ρ=r = 0, [Hz]|ρ=r = 0, (5)

where [ f ]|
ρ0

= lim
ρ→ρ0−0

f (ρ)− lim
ρ→ρ0+0

f (ρ); and the radia-

tion condition at infinity: the electromagnetic field decays
as O(1/ρ) for ρ → ∞.

The permittivity, permeability, and chirality in the whole
space are determined as follows

ε̃ =

{
ε, ρ ≤ r,
ε0, ρ > r, µ̃ =

{
µ, ρ ≤ r,
µ0, ρ > r, , χ̃ =

{
χ, ρ ≤ r,
0, ρ > r,



where ε(ρ) ∈ C1[r0, r], min
[r0, r]

ε(ρ) > ε0, µ(ρ) ∈

C1[r0, r], min
[r0, r]

µ(ρ)> µ0 and χ is a real constant.

The weak formulation[9] of problem (1)–(5) leads us to the
following variational relation:

γ
2

r∫
r0

(ueve +umvm)dρ +

r∫
r0

(u′ev′e +u′mv′m)dρ−

−
r∫

r0

(geueve +gmumvm)dρ−
r∫

r0

(heu′eve +hmu′mvm)dρ+

+

r∫
r0

( fe(ρue)
′vm+ fm(ρum)

′ve)dρ+

r∫
r0

(keuevm+kmumve)dρ+

+κ

((
µ

ε0
F(γ)− 1

r

)
ue(r)+

χ

ε0
F(γ)um(r)

)
ve(r)+

+κ

((
ε

µ0
F(γ)− 1

r

)
um(r)+

χ

µ0
F(γ)ue(r)

)
vm(r)= 0,

where ue := iEϕ(ρ), um := Hϕ(ρ); ve and vm are suffi-
ciently smooth test functions;

he =
εµ ′

χ2− εµ
+

1
ρ
, and hm =

ε ′µ

χ2− εµ
+

1
ρ
,

ge = ω
2(χ2 + εµ)− 1

ρ2 +
1
ρ

εµ ′

χ2− εµ
,

gm = ω
2(χ2 + εµ)− 1

ρ2 +
1
ρ

ε ′µ

χ2− εµ
,

fe =
χε ′

ρ (χ2− εµ)
, and fm =

χµ ′

ρ (χ2− εµ)
,

ke =−2ω
2
χε , and km =−2ω

2
χµ,

κ
2 = γ

2−ω
2
ε0µ0,

F(γ) =−K0(κr)
K1(κr)

.

3 Numerical Method and Results

Using the projection method we reduce the addressed vari-
ational relation to a system of algebraic equations.

First, split interval [r0, r] into n subintervals with the length

l =
r0− r

n
.

Define a set of n subintervals

Φi = [r0 +(i−1)l, r0 +(i+1)l], i = 1, ...,n−1

and
Φn = [r0 +(n−1)l, h],

and set of n+1 subintervals

Ψ1 = [r0, r0 + l],

Ψ j = [r0 +(i−2)l, r0 + il], j = 2, ...,n

and
Ψn+1 = [r0 +(n−1)l, h].

These subintervals are called base finite elements.

In accordance with the scheme of the projection method, it
is necessary to introduce basis functions φi and ψ j in order
to approximate the solution. The basis functions are defined
on each subinterval Φi and Ψ j (φi and ψ j vanishes outside
intervals Φi and Ψ j, respectively).

Basis functions φi defined on Φi are

φi =


ρ− r0− (i−1)l

l
, ρ < r0 + il,

−ρ− r0− (i+1)l
l

, ρ > r0 + il,
, i = 1,n−1

and

φn =
ρ− r+ l

l
;

Basis functions ψi defined on Φi are

ψ1 =−
ρ2−2r0ρ + r2

0− l2

l2 ,

ψ2 =


ρ2−2r0ρ + r2

0
l2 , ρ < r0 + l,

−ρ− r0−2l
l

, ρ > r0 + l,

ψ j =


ρ− r0− (i−2)l

l
, ρ < r0 +(i−1)l,

−ρ− r0− il
l

, ρ > r0 +(i−1)l,
, j = 3,n

and

ψn+1 =
ρ− r+ l

l
.

Such basis functions take into account the physical nature
of the problem under consideration.

We look for an approximate solution with real coefficients
αi and β j such that

Π =
n

∑
i=1

αiφi, Φ =
n+1

∑
j=1

β jψ j. (6)

Substituting functions ue and um with representations (6)
into the variational relation, we obtain a system of linear
equations with respect to αi and β j (for a fixed value of γ)

A(γ)x = 0, (7)



where matrices A(γ) and x have the form

A =



A1,1
ee · · · A1,n

ee A1,1
em · · · A1,n+1

em
...

. . .
...

...
. . .

...
An,1

ee · · · An,n
ee An,1

em · · · An,n+1
em

A1,1
me · · · A1,n

me A1,1
mm · · · A1,n+1

mm
...

. . .
...

...
. . .

...
An+1,1

me · · · An+1,n
me An+1,1

mm · · · An+1,n+1
mm


,

and

x =



α1
...

αn

β1
...

βn+1


,

where

Ai, j
ee = γ

2
∫
Φi

φiφ jdρ +
∫
Φi

φ
′
i φ
′
jdρ−

−
∫
Φi

geφiφ jdρ−
∫
Φi

heφ
′
i φ jdρ+

+κ

(
µ(r)
ε0

F(γ)− 1
r

)
φi(r)φ j(r), i, j = 1,n;

Ai, j
em =

∫
Φi

(
fe(ρφi)

′+ keφi
)

ψ jdρ+

+κ
χ

µ0
F(γ)φi(r)ψ j(r), i = 1,n, j = 1,n+1,

Ai, j
me =

∫
Ψi

(
fm(ρψi)

′+ kmψi
)

φ jdρ+

+κ
χ

ε0
F(γ)ψi(r)φ j(r), i = 1,n+1, j = 1,n,

Ai, j
mm = γ

2
∫
Ψi

ψiψ jdρ +
∫
Ψi

ψ
′
i ψ
′
jdρ−

−
∫
Ψi

gmψiψ jdρ−
∫
Ψi

hmψ
′
i ψ jdρ+

+κ

(
ε(r)
µ0

F(γ)− 1
r

)
ψi(r)ψ j(r), i, j = 1,n+1.

Thus A(γ) is a (2n+1)× (2n+1) matrix. Denote by ∆(γ)
the determinant of A(γ),

∆(γ) = detA(γ). (8)

Definition of approximate solution. If there exists γ = γ̃

such that ∆(γ̃) = 0, then γ̃ is an approximate eigenvalue of
Problem P. In other words, if an interval [γ, γ] is such that
∆(γ)×∆(γ) < 0, then this means that there exists γ = γ̃ ∈
[γ, γ] which is a propagation constant of problem (1)–(5).
This value can be calculated with any prescribed accuracy.

As a model problem, consider the following set of parame-
ters: r0 = 2, r = 4, ε = 4+ρ, µ = 1, ε0 = µ0 = 1. Disper-
sion curves (graphs of the dependence of normalized pro-
pagation constant γ/ω on frequency ω) are shown in the
figure. Red dots correspond to the chiral filling of the wa-
veguide χ = 0.01; blue curves correspond to a waveguide
filled with an inhomogeneous dielectric χ = 0.

Figure 2. Dispersion curves.

We see that with increasing frequency ω , the curves corre-
sponding to the chiral case differ from those in the dielectric
case.

Thus, waves in chiral media has significant characteristic
differences compared with the propagation in linear non-
chiral dielectrics. Our numerical results confirm this sigin-
ficant property.

4 Conclusion

The developed numerical method is efficient for the analy-
sis of the wave propagation in open waveguides filled with
chiral media and can be applied to calculating propagation
constants of polarized waves in cylindrical nonliear circu-
lar waveguides. The obtained results of numerical modeling
highlight characteristic features of waves in chiral open wa-
veguides.
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