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Abstract

In this work, we study electromagnetic waves propagating
in an inhomogeneous waveguide of circular cross section
filled with a chiral medium. For the numerical solution of
the problem, a Galerkin method is proposed. The results
of numerical study of the spectrum of propagating surface
waves of the considered open waveguide are presented.

1 Introduction

Recently, in connection with the progress in the field of po-
lymer technologies, new synthesized chiral materials have
appeared, which served as an incentive for research on the
relevant problems of the wave propagation theory. The ana-
lysis of waves in chiral media is performed in [1]-[5] to
name the few. One of the most significant properties has
been revealed that chirality exhibits itself when the system
of waves in a waveguide with a chirality parameter equal to
zero degenerates. In an infinite medium, chirality removes
the degeneracy that exists between plane waves with diffe-
rent directions of linear polarization. In addition, normal
waves in a chiral waveguide acquire different propagation
constants and definite polarization states.

The waves in open waveguide structures filled with chiral
media was studied using the method of operator pencils and
operator-valued functions. proposed by Smirnov and Smol-
kin in [6]-[9] where various results of analytical and nume-
rical investigations of the spectrum of propagating surface
waves are presented.

2 Statement of the problem

Consider three-dimensional space R equipped with cylin-
drical coordinate system Op @z and filled with an isotropic
source-free medium having permittivity € and permeabi-
lity to (vacuum).

Consider the determination of polarized surface waves in
a cylindrical circular waveguide. The cross-section of the
waveguide will be either a circle of radius » > 0 or a ring
with internal radius rg > 0 (perfectly conducting cylinder)
and external radius r > rg. We will consider both sructures
simultaneously setting in the first case ro = 0. The geome-
try of the problem is shown in Fig. 1.

Figure 1. Geometry of the problem.

Determination of electromagnetic waves in a waveguide is
the problem of finding nontrivial propagating wave solu-
tions to the homogeneous system of Maxwell’s equations,
i.e., the solutions with dependence 7% on coordinate z [10],
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with the boundary conditions for the tangential electric field
components on perfectly conducting surfaces,

Eo p=ro 0, EZ|P:f0 =0, )

the transmission conditions for the tangential electric and
magnetic field components on the surfaces of "breaks" of
permittivity, permeability and chirality,

[E(P] |p:r =0, [EZ] |p:r =0,
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where [fll,, = lim  7(p)~

tion condition at infinity: the electromagnetic field decays
as O(1/p) forp — oo

lim f(p); and the radia-
—po+0

The permittivity, permeability, and chirality in the whole
space are determined as follows
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where €(p) € Cl[ro, r], mine(p) > &, u(p) €

[rOv r]
C'[ry, 1], [mm] w(p) > o and ¥ is a real constant.
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The weak formulation[9] of problem (1)—(5) leads us to the
following variational relation:
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where u, := iEy(p), um := Hy(p); ve and v,, are suffi-
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3 Numerical Method and Results

Using the projection method we reduce the addressed vari-
ational relation to a system of algebraic equations.
First, split interval [rg, r] into n subintervals with the length

ro—r

l:

n

Define a set of n subintervals
@ =[ro+({i— 1Dl ro+ i+ 1), i=1,.,n—1

and
D, =[ro+ (n—1)I, A,

and set of n+ 1 subintervals

¥ =[ro, ro+1],

‘Pj = [r0+(i72)l, }”()Jril], j=2,..,n
and

W1 = [ro+(n—=1), A].

These subintervals are called base finite elements.

In accordance with the scheme of the projection method, it
is necessary to introduce basis functions ¢; and y; in order
to approximate the solution. The basis functions are defined
on each subinterval ®; and ¥; (¢; and y; vanishes outside
intervals ®; and ¥, respectively).

Basis functions ¢; defined on ®; are
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Basis functions y; defined on ®; are
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Such basis functions take into account the physical nature
of the problem under consideration.

We look for an approximate solution with real coefficients
o; and f; such that

n+1
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Substituting functions u, and u, with representations (6)
into the variational relation, we obtain a system of linear
equations with respect to ¢; and ; (for a fixed value of )

A(y)x =0, )



where matrices A(y) and x have the form
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Thus A(y) is a (2n+1) x (2n+ 1) matrix. Denote by A(y)
the determinant of A(7),

A(y) = detA(y). ®)

Definition of approximate solution. If there exists Yy =7y
such that A(Y) = 0, then ¥ is an approximate eigenvalue of
Problem P. In other words, if an interval [y, Y] is such that

A(y) x A(y) < 0, then this means that there exists Yy =7y €

[Y, 7] which is a propagation constant of problem (1)—(5).

This value can be calculated with any prescribed accuracy.

As a model problem, consider the following set of parame-
ters: ro=2,r=4, € =4+4p, W =1, & = Up = 1. Disper-
sion curves (graphs of the dependence of normalized pro-
pagation constant ¥/® on frequency ®) are shown in the
figure. Red dots correspond to the chiral filling of the wa-
veguide ¥ = 0.01; blue curves correspond to a waveguide
filled with an inhomogeneous dielectric y = 0.
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Figure 2. Dispersion curves.

We see that with increasing frequency o, the curves corre-
sponding to the chiral case differ from those in the dielectric
case.

Thus, waves in chiral media has significant characteristic
differences compared with the propagation in linear non-
chiral dielectrics. Our numerical results confirm this sigin-
ficant property.

4 Conclusion

The developed numerical method is efficient for the analy-
sis of the wave propagation in open waveguides filled with
chiral media and can be applied to calculating propagation
constants of polarized waves in cylindrical nonliear circu-
lar waveguides. The obtained results of numerical modeling
highlight characteristic features of waves in chiral open wa-
veguides.
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