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Abstract

A relatively simple, straightforward, self-contained deriva-

tion, sufficiently general for most engineering purposes,

is given to show that passivity implies causality for the

input-impedance representation of linear, single-port, time-

invariant transmitting antennas.

1 Introduction

A powerful theorem for linear, time-invariant networks

states that passivity of the network implies causality. This

important theorem was first proven for input-impedance or

input-admittance representations of networks by Youla et

al. [1] using rigorous linear operator theory with Lebesgue

measure and later by Zemanian [2, sec. 10.3] using

Schwartz’s approach to rigorous distribution theory. Both

methods of proof are rather involved and removed from the

physics, and require a substantial amount of preliminary

mathematical development and analysis that may be prohi-

bitive for the uninitiated, who nevertheless may be familiar

with the definition of delta functions as a parametric limit

of well-defined Riemann integrable functions.

Therefore, it is the main purpose of this communication

to provide within the input-impedance representation of

transmitting antennas a self-contained, sufficiently general

derivation, using only the basic mathematical tools famil-

iar to most of the antenna engineering community, to prove

that passivity of a linear, time-invariant, single-port trans-

mitting antenna implies that the antenna is also causal.

We assume realistic time-domain voltages and currents

that are effectively time-limited and whose correspond-

ing frequency-domain voltages and currents are effectively

bandlimited. In addition, all voltages and currents are as-

sumed to be bounded and Riemann integrable in both the

time and frequency domains. Linearity is defined by assum-

ing the frequency-domain voltage is equal to the frequency-

domain current multiplied by a frequency-domain input

impedance. Within these assumptions of time-limited, ban-

dlimited, bounded, Riemann integrable functions, all the

important steps of the derivation are rigorously justified by

referencing the relevant classical textbook theorems of dif-

ferentiation and Riemannian integration. Although the ba-

sic definitions and analysis needed to prove causality from

passivity are contained herein, the paper by Triverio et al.

can be consulted for a review of the concepts of passivity,

causality, and stability [3].

2 Voltage and Current of a Single-Port

Transmitting Antenna

Consider the time-domain voltage v(t) and current i(t) for

a single-port transmitting antenna shown in Fig. 1. A gen-
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Figure 1. Schematic of the time-domain voltage and cur-

rent at the single port of the transmitting antenna.

erator applies a voltage v(t) or a current i(t) to the input

terminal of the port, resulting in a current i(t) or a volt-

age v(t), respectively, at the same terminal. Assume that

these are realistic operational voltages and currents that are

time-limited (they are zero or less than the noise level out-

side a finite interval), bounded, and Riemann integrable

(and thus absolutely integrable [4, p. 116]). Consequently,

their Fourier transforms exist to give the corresponding

frequency-domain voltage V(ω) and current I(ω)

V(ω) =
1

2π

+∞∫

−∞

v(t)eiωtdt, I(ω) =
1

2π

+∞∫

−∞

i(t)eiωtdt (1a,b)

where ω is the angular frequency. Since v(t) and i(t) are

real valued functions, the equations in (1) imply that

V(−ω) = V ∗(ω), I(−ω) = I∗(ω) (2a,b)

where the ∗ denotes the complex conjugate.

Assume that the frequency domain antenna voltages and

currents are bounded, bandlimited (they are zero or less

than the noise level outside a finite frequency band),

Riemann integrable functions of the angular frequency ω.

Thus, the inverse Fourier transforms of V (ω) and I(ω)
exist with their corresponding time-domain voltage and

current



v(t) =

+∞∫

−∞

V(ω)e−iωt dω, i(t) =

+∞∫

−∞

I(ω)e−iωt dω. (3a,b)

In order for the v(t) and i(t) in equations (3) to equal those

in (1) at every t , they should be restricted to continuous

functions of t [5, p. 236]. However, the continuity of v(t)
and i(t) need not be stated as an additional restriction be-

cause for a finite bandwidth with V(ω) and I(ω) bounded

and Riemann integrable (and thus absolutely integrable [4,

p. 116]), it follows that v(t) and i(t) are continuous [5, th.

2.7 on p. 225 with footnote on p. 222].

Strictly speaking, V(ω) and I(ω) cannot be perfectly ban-

dlimited (that is, exactly zero outside a finite bandwidth,

|ω| < ω0) if v(t) and i(t) are assumed to be perfectly time-

limited (that is, exactly zero outside a finite interval, |t| <
T0). Nonetheless, all known generators that feed antennas

produce signals that decay into the noise levels beyond a

given frequency and thus are effectively bandlimited. Of

course, this effective bandwidth in the frequency-domain

limits the narrowness of the pulse widths in the time do-

main signals. However, from a theoretical standpoint, this

limitation is not prohibitive because an indefinitely large,

but effectively finite frequency-domain bandwidth, can pro-

duce an indefinitely narrow, finite time-domain pulse width

(see Footnote 2).

Also, one can assume that v(t) and i(t) are not perfectly

but effectively time-limited (decaying into the noise

levels beyond a finite time) without jeopardizing the finite

bandwidth assumption for V (ω) and I(ω). In other words,

the Fourier transform pairs [v(t), i(t)] and [V(ω), I(ω)] can

both be effectively (but not perfectly) zero outside finite

time and frequency domains. For example, the Fourier

transform of an exponentially decaying Gaussian pulse

[e−t2/(2σ 2)] is another Gaussian function [e−σ2ω2/2] that

decays exponentially with frequency.

2.1 Definitions of Passivity and Causality

The transmitting antenna is passive if no net energy can

be extracted at any time from the antenna as it is fed by

the time-domain voltage or current. It is assumed that no

energy is stored in the antenna before the voltage or current

is applied. Mathematically, this “strong” passivity can be

expressed as t∫

−∞

v(τ)i(τ)dτ ≥ 0 (4)

for all t and for all allowable v(τ) and i(τ). Since the allow-

able v(τ) and i(τ) are time-limited, bounded, and Riemann

integrable, the Riemann integral for the energy in (4) is well

defined (exists) [4, p. 116].

The single-port transmitting antenna is causal if for every

allowable input current i(τ) or voltage v(τ) that is zero at

the terminal of the input port for τ < t , the output voltage

v(τ) or current i(τ), respectively, at the same port terminal

will also be zero for τ < t .

The rest of the paper is devoted to showing that the passiv-

ity expressed in (4) for a linear, time invariant transmitting

antenna implies that the antenna is causal.

3 Input Impedance for a Linear, Time-

Invariant Transmitting Antenna

Linearity for the one-port, time-invariant transmitting an-

tenna can be defined by the frequency-domain voltage

V (ω) being equal to the frequency-domain current I(ω)
multiplied by a frequency-domain input impedance Z(ω)
at each frequency ω, that is

V (ω) = Z(ω)I(ω). (5)

Combining (5) with (2), one finds that

Z(−ω) = Z∗(ω). (6)

Since it is assumed that V(ω) is a bounded function of ω,

the input impedance Z(ω) must not have singularities over

the effective operational bandwidth of I(ω). If at every fre-

quency within its operational bandwidth, the antenna radi-

ates a nonzero power (through a finite nonzero radiation re-

sistance) when excited by a nonzero applied voltage V (ω),
then I(ω) cannot be zero for this nonzero V(ω) and thus

Z(ω) has to be bounded within the effective bandwidth of

the antenna.1

However, unlike V (ω) and I(ω), we do not want to assume

that Z(ω) is bandlimited because it should be general

enough to represent antennas with network elements such

as resistors, inductors, and capacitors having impedances

R, −iωL, and i/(ωC), respectively. Therefore, in order to

represent the time-domain input impedance as an inverse

Fourier transform of Z(ω) that converges for all t , we insert

an exponentially decaying factor into the inverse-transform

integrand to obtain what has been called the “analytic-

signal” transform

zα(t) =

+∞∫

−∞

Z(ω)e−iωt e−|ω |αdω (7)

where α is a positive real constant (α > 0). With the

help of (6), this “analytic-signal” transform in (7) can be

rewritten as [6, sec. 5.3]

zα(t) = 2

+∞∫

0

Re[Z(ω)e−iωt ]e−ωαdω (8)

where “Re” denotes the “real part”. In this paper, we will

work with (7) rather than (8) to take advantage of some

useful theorems that apply to the full ±∞ integral in (7).

It is assumed that for any α > 0, the function Z(ω)e−|ω |α

approaches zero fast and smooth enough as |ω| → ∞ that

1Many circuits have lossless poles (unbounded singularities) in Z(ω)
but they do not represent realistic antennas that have some radiation loss

and usually some dissipative loss throughout their frequency bandwidth.

These losses reduce the infinite singularities of the lossless poles to finite

values.



it does not prevent the convergence of Riemann integration

(because of the exponential decay of e−|ω |α). If, in addition,

Z(ω)e−|ω |α is a bounded, Riemann integrable function of

ω (and thus absolutely Riemann integrable [4, pp. 115–

116]) for α > 0, then zα(t) in (7) is a continuous function

of t [5, th. 2.7 on p. 225 with footnote on p. 222] for

α > 0. The limit of the integral in (7) as α → 0 cannot

always be taken for some values of t because for some Z(ω)
the function limα→0 zα(t) can contain infinite singularities

at some values of t and thus is not Riemann integrable. (For

example, if Z(ω) = R, then limα→0 zα(0) = ∞.)

Nevertheless, we can take the limit as α → 0 to recover

Z(ω) from the Fourier transform of zα(t) in (7), namely

Z(ω)e−|ω |α =
1

2π

+∞∫

−∞

zα(t)eiωt dt (9)

so that

Z(ω) = lim
α→0

[
Z(ω)e−|ω |α

]
=

1

2π
lim
α→0

+∞∫

−∞

zα(t)eiωtdt.

(10)

A sufficient condition for (7) and (9) to be Fourier trans-

form pairs is for Z(ω)e−|ω |α to be a continuous, piecewise

differentiable, absolutely integrable function of ω [7, the-

orem 4-5]. Alternatively, the condition of piecewise dif-

ferentiability of Z(ω)e−|ω |α can be replaced by the abso-

lute integrability of zα(t) [5, p. 236]. It can be proven that

the absolute integrability of zα(t) as α → 0 is a necessary

and sufficient condition for the electrical stability of the an-

tenna.

3.1 Input Impedance Convolution Integral

To obtain a convolution integral for v(t) in terms of zα(t)
and i(t), we use (3a) and (5) to write

v(t) =

+∞∫

−∞

V (ω)e−iωt dω =

+∞∫

−∞

Z(ω)I(ω)e−iωt dω (11)

which can be rewritten as

v(t) =

+∞∫

−∞

lim
α→0

[Z(ω)e−|ω |α ]I(ω)e−iωt dω. (12)

Since I(ω) and V(ω) are effectively bandlimited func-

tions of ω, the ±∞ limits of integration can be made fi-

nite (±Ω) so that there is negligible difference between∫ +Ω

−Ω
Z(ω)e−|ω |α I(ω)e−iωt dω and the same integral with

±∞ limits for all |α| < α0. Then with Z(ω)e−|ω |α a con-

tinuous bounded function of ω within ±Ω, the derivative

with respect to α of this integral can be brought inside the

integral sign [8, vol. II, p. 218], a result that implies that

the α limit in (12) can be brought outside the integral to get

v(t) = lim
α→0

+∞∫

−∞

[Z(ω)e−|ω |α ]I(ω)e−iωt dω. (13)

Applying the convolution theorem to the integral in (13)

along with the inverse Fourier transforms in (3b) and (7),

one recasts (13) in the form

v(t) =
1

2π
lim
α→0

+∞∫

−∞

zα(t − t ′)i(t ′)dt ′ (14)

which is a time-domain input-impedance convolution inte-

gral for v(t) in terms of i(t). Sufficient conditions for the

convolution theorem to apply to the integral in (13) are that

I(ω) and Z(ω)e−|ω |α are continuous, absolutely integrable

functions of ω for α > 0, and that i(t) is an absolutely inte-

grable function of t [7, theorem 4-8(iv)].

4 Proof of Causality

Causality can be derived from passivity with the help of the

convolution integral in (14). To do this, begin by choosing

a time-domain input current function i(t) in (14) that is zero

for t less than some t0, that is

i(t) = 0, for t < t0 (15)

and satisfies the passivity condition in (4). Next consider

any allowable (finite duration, bounded, and Riemann in-

tegrable) current function i1(t) that satisfies the passivity

condition in (4), and a second current function i2(t) related

linearly to i1(t) and i(t) by the simple sum

i2(t) = i1(t)+Ai(t) (16)

where A can be any real number (positive, negative, or

zero). The current i2(t) satisfies the passivity condition in

(4) because both i(t) and i1(t) satisfy this passivity condi-

tion. Neither of the functions i1(t) or i2(t) are necessarily

zero for t < t0 However, in view of (15), we see that

i2(t) = i1(t), for t < t0. (17)

Substitution of i2(t) from (16) into the convolution integral

of (14) gives

v2(t) = v1(t)+Av(t). (18)

From the definition of passivity in (4)

t∫

−∞

v2(τ)i2(τ)dτ =

t∫

−∞

[v1(τ)+Av(τ)][i1(τ)+Ai(τ)]dτ ≥ 0

(19)

for all t . For t < t0, the identity in (15) or (17) shows that

this expression reduces to

t∫

−∞

[v1(τ)+Av(τ)]i1(τ)dτ ≥ 0, for t < t0. (20)

Now assume the result contrary to what we want to prove,

namely that v(τ) is nonzero for some interval during the

time τ < t0. Then, since i1(τ) can be any function within

the allowable set of functions (finite duration, bounded,

and Riemann integrable), there will be many functions



i1(τ) for which
t∫

−∞

v(τ)i1(τ)dτ �= 0, for some t < t0. (21)

This means that since A in (20) can be any real number with

an unrestricted large positive or negative value, the integral

in (20) can always be made less than zero for some t < t0,

therefore violating the inequality in (20). Consequently, we

have a contradiction unless v(τ) is zero for all τ < t0.

In other words, beginning with any allowable input current

i(t), which is zero for all t < t0 and satisfies the passivity

condition in (4), the corresponding voltage v(t) given by the

linear impedance relation in (14) is also zero for all t < t0;

that is, passivity (4) implies causality.

Letting i(t ′) in (14) approach the delta function δ (t ′ − t0)
(which is zero for t ′ < t0) with respect to the test function

zα(t − t ′), we have v(t) = zα(t − t0) as α → 0.2 Thus, for

causal systems, zα(t − t0) = 0 for t < t0 as α approaches

zero, that is, causality implies that the time-domain input-

impedance function satisfies

lim
α→0

zα(t) = 0, t < 0. (22)

Conversely if zα(t) obeys (22), then (14) shows that the

system is causal (that is, if i(t) = 0 for t < t0, then v(t) = 0

for t < t0). In all, the linear, time-invariant, one-port net-

work or antenna is causal if and only if its time-domain

input-impedance function is zero for all time less than zero

as α → 0, that is, it obeys (22). This necessary and suffi-

cient condition for causality is a property of all causal linear

impulse response functions of which zα(t) is a particular

case [3].

We have shown that passivity implies causality and thus

noncausality implies nonpassivity, but nonpassivity does

not imply noncausality. For example, consider the

impedance of a negative resistance Z(ω) = −R (R > 0),

which is gainy (nonpassive). Taking the Fourier trans-

form of this Z(ω) gives the corresponding zα(t) in (7) that

approaches −2πRδ (t) as α → 0 if used with test func-

tions as in the convolution integral (14). Thus, zα(t) is

effectively causal as α → 0 because δ (t) is causal (that

is, δ (t) = 0 for t < 0). However, since
∫ t
−∞

v(τ)i(τ)dτ =

−2πR
∫ t
−∞

i2(τ)dτ < 0, the system is nonpassive for all in-

put currents.

5 Conclusion

Past proofs that passivity implies causality for linear, time-

invariant networks represented by an input impedance

2One may object to letting i(t) approach a Dirac delta function δ(t)
because it has been assumed that i(t) is a bounded, Riemann integrable

function and that I(ω) is bandlimited. One can circumvent this problem

by replacing δ(t) with a well-defined, parametric, finite delta-like func-

tion δn(t) (with a bandlimited frequency spectrum) that has the sifting

property of the Dirac delta function as the parameter n becomes increas-

ingly large. Because zα (t) is a continuous function of t, this parametric

delta-like function extracts zα (t) + εn(t) where |εn(t)| becomes increas-

ingly small in value as the parameter n becomes increasingly large.

have relied upon the advanced mathematical theorems of

Lebesgue-measure linear operator theory and Schwartz’s

theory of distributions that are somewhat detached from the

physics of these networks. Consequently, in this paper a rel-

atively simple, straightforward, self-contained derivation is

given, using only the mathematics of Riemann integration

and parametric delta functions, to prove that the causality

of single-port transmitting antennas with their voltages lin-

early related to their currents by an input impedance fol-

lows from the passivity of these antennas. Necessary and

sufficient conditions for the causality of the antennas are

given in terms of their time-domain input impedances. It

will also be demonstrated in the talk using a parallel RLC

circuit that if a frequency-dependent series resistance and

reactance are used to represent the input impedance of an

antiresonant passive antenna, neither the time-domain se-

ries resistance nor the time-domain series reactance is pas-

sive, even though the time-domain input impedance (their

sum) satisfies the passivity, causality, and stability condi-

tions [9]. Although all of the derivations are based on the

input-impedance representation to define the linearity of the

antennas, the analogous derivations hold as well for the

input-admittance representation of antennas.

Acknowledgements

This research was supported in part under the U.S. Air

Force Office of Scientific Research (AFOSR) Grant #

FA9550-19-1-0097 through Dr. Arje Nachman.

References

[1] D. C. Youla, L. J. Castriota, and H. J. Carlin, “Bounded

real scattering matrices and the foundations of linear pas-

sive network theory,” IRE Trans. Circuit Theory, vol. CT-6,

pp. 102–124, March 1959.

[2] A. H. Zemanian, Distribution Theory and Transform Anal-

ysis. New York, NY, USA: Dover, 1965.

[3] P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. G. Canavero,

and R. Achar, “Stability, causality, and passivity in electri-

cal interconnect models,” IEEE Trans. AdvancedPackaging,

vol. 30, pp. 795–808, November 2007.

[4] J. M. H. Olmsted, Advanced Calculus. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1961.

[5] J. S. Walker, Fourier Analysis. Oxford, UK: Oxford, 1988.

[6] T. B. Hansen and A. D. Yaghjian, Plane-Wave Theory of

Time-Domain Fields: Near-Field Scanning Applications.

New York, NY, USA: IEEE/Wiley, 1999.

[7] R. T. Seeley, An Introduction to Fourier Series and Inte-

grals. New York, NY, USA: W. A. Benjamin, 1966.

[8] R. Courant, Differential and Integral Calculus. New York,

NY, USA: Interscience, 1936.

[9] A. D. Yaghjian, “Physical unrealizability of a series reac-

tance and resistance of a passive causal input impedance,”

Proceedings of ICEAA, pp. 1620–1623, September 2017.


