
URSI GASS 2021, Rome, Italy, 28 August - 4 September 2021 

 
 

Accurate and Efficient Analysis of the Field Scattered from a Thin Dielectric Disk Near the Disk 

Natural Mode Resonances by means of GBC and MAP 
 

M. Lucido* (1,2) 

(1) Department of Electrical and Information Engineering “Maurizio Scarano” (DIEI), University of Cassino and Southern 

Lazio, 03043, Cassino, Italy 

(2) ELEDIA Research Center (ELEDIA@UniCAS), University of Cassino and Southern Lazio, 03043, Cassino, Italy 

 

 

 

Abstract 
 

The generalized boundary conditions allow to formulate 

the problem of the electromagnetic scattering from a thin 

dielectric disk in terms of two decoupled surface integral 

equations for the effective electric and magnetic currents. 

Taking advantage of the revolution symmetry of the 

problem, such equations can be reduced to two infinite set 

of one-dimensional independent integral equations in the 

vector Hankel transform domain. A suitable analytical 

preconditioning procedure, based on Helmholtz 

decomposition and Galerkin method with a complete set 

of orthogonal eigenfunctions of the static part of the 

integral operator, reconstructing the physical behavior of 

the fields, as expansion basis, leads to fast converging 

Fredholm second-kind matrix equations even near the 

natural resonances of the disk. 

 

1 Introduction 
 

Dielectric disks are used as building blocks of many 

devices across a wide spectrum of frequencies mainly 

because they can work like open resonators, which can 

support even high-Q natural modes. The analysis of the 

electromagnetic scattering from such objects is frequently 

carried out by means of integral equation formulations 

because the radiation condition is taken into account by 

the choice of the Green’s function of the problem and the 

unknowns are defined on finite supports. However, a 

rigorous full-wave analysis of a disk with a finite 

thickness usually requires a rather complicated vector 

formulation to be numerically solved. Moreover, the 

discretization needed near the natural resonances of the 

disk can be particularly burdensome in terms of memory 

requirement due to the great variability of the fields for 

small changes of the frequency or the material parameters. 

When dealing with a thin dielectric disk, we can imagine 

considering a zero-thickness disk providing generalized 

boundary conditions (GBC) [1-3] on the disk surface and 

guaranteeing the local power boundedness by means of 

suitable edge condition [4]. In this way, the problem can 

be formulated in terms of two decoupled surface integral 

equations for the effective electric and magnetic currents, 

respectively. The formulation can be further simplified by 

taking advantage of the revolution symmetry of the 

problem. Indeed, the Fourier series expansion of the fields 

combined with the vector Hankel transform allow to 

reduce the surface integral equations to two infinite sets of 

one-dimensional independent integral equations in the 

spectral domain.  

A key point is the proper selection of the discretization 

scheme to be used due to the hypersingular nature of the 

obtained integral equations, for which the existence of a 

solution cannot be established and, if such a solution 

exists, the convergence of a discretization scheme cannot 

be generally stated. 

The method of analytical preconditioning (MAP) [5], 

which makes simultaneously the discretization and the 

analytical regularization of an integral equation, allows to 

overcome this problem. Indeed, the obtained matrix 

equation is the sum of a continuously invertible operator 

and a completely continuous operator at which the 

Fredholm theory can be applied [6]. On the other hand, 

fast convergence is achieved by means of a suitable 

choice of the expansion basis, as demonstrated in a wide 

range of applications [7-15]. 

In this paper, the one-dimensional integral equation for 

the n-th harmonic of the electric/magnetic current is 

discretized by means of Helmholtz decomposition and 

Galerkin method with a complete set of orthogonal 

eigenfunctions of the static part of the integral operator, 

reconstructing the physical behavior of the fields around 

the center and at the edge of the disk. In this way, a fast 

converging Fredholm second-kind matrix operator 

equation is obtained. The proposed numerical results 

show the effectiveness of the technique detailed above in 

reconstructing the solution even near the natural 

resonances of the disk.   

 

2 Formulation of the Problem and Proposed 

Solution 
 

A thin dielectric disk of radius a and thickness τ  is 

immersed in free space. A cylindrical coordinate system 

( ), , zρ φ  with the origin at the center of the disk and the z 

axis orthogonal to it is introduced. A plane wave,   

( ),
inc incE H , impinges onto the disk surface generating a 

scattered field, ( ),
sc scE H , such that the total field, 

( ),E H , is given by the sum of the incident field and the 



scattered field. Supposing τ λ� and aτ � , where λ   

denotes the free space wavelength, the problem can be 

formulated in terms of two surface integral equations by 

imposing the GBC on the median surface of the disk, 

located at 0z = , i.e., [1] 

( )0 0
ˆ ˆ 2 e ez z
z E E z R J+ −= =

× + × =  (1a)

( )0 0
ˆ ˆ 2 m mz z
z H H z R J+ −= =

× + × =  (1b)

for aρ ≤ , where the effective electric and magnetic 

currents are the jumps across the median surface, 

( )
0 0

ˆ
sc sc

e
z z

J z H H
+ −= =

= × − , (2a)

( )
0 0

ˆ
sc sc

m
z z

J z E E
+ −= =

=− × − , (2b)

while eR  and mR  are the electric and magnetic 

resistivities of the disk, respectively. It is interesting to 

observe that the equations (1) decouple for a planar 

surface. Hence, equation (1a) is for the effective electric 

current, while equation (1b) is for the magnetic one. 

Moreover, the unique solvability of the problem in hand is 

guaranteed by the boundary conditions, the edge 

condition and the radiation condition [5]. 

Due to the revolution symmetry of the problem, the two 

surface integral equations in the spatial domain can be 

equivalently reduced to two infinite sets of independent 

one-dimensional integral equations in the Hankel 

transform domain by means of the Fourier series 

expansion of the fields. The equation for the n-th 

harmonic of the electric/magnetic current is given by [16] 
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for aρ ≤ , ,r e m= , eF E= , mF H= , where the symbol 

( ) ( )
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P  (4) 

has been introduced, the kernel 
( ) ( )n wρH  and the 

spectral domain Green’s functions ( )
r

wG%  have been 

defined in [16], and 
( )

( )
n

r wJ%  is the vector Hankel 

transform of order n (VHTn) of the n-th harmonic of the 

electric/magnetic current, 
( ) ( )n

r ρJ .  

By means of Helmholtz decomposition [17], each 
unknown can be represented as the superposition of a 

surface curl-free contribution, 
( ) ( ),

n

r C ρJ , and a surface 

divergence free-contribution, 
( ) ( ),

n

r D ρJ . It is simple to 

demonstrate that the VHTn of these contributions have 

only one nonvanishing component, i.e., 

( )
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Therefore, assuming 
( ) ( ),

n

r T ρJ  with ,T C D=  as new 

unknowns in the spatial domain, scalar unknowns in the 

spectral domain can be handled. 

The general integral equation in (3) is discretized by 

adopting the analytical preconditioning procedure 

presented in [18-20] and generalized in [21], which leads 

to a Fredholm second-kind matrix operator equation. It is 
based on Galerkin discretization scheme combined with a 

proper selection of the expansion functions. In our case, 

suitable expansion series in the spectral domain are the 

following [22]: 

( ) ( ) ( ) ( )
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where ,n mδ  is the Kronecker delta and ( )
, ,

n

r T hγ  denotes the 

general expansion coefficient, ( )nJ ⋅  is the Bessel function 

of the first kind and order n [23], ( )
, 2 1
n

T h Tn h pη = + + + , 

3 2Cp =  and 1Dp = . It is interesting to note that, the 

functions in (6) constitute a complete set of orthonormal 

eigenfunctions of the static part of the integral operator, 

which reconstruct the physical behaviour of the 

components of the n-th harmonic of the currents around 

the center of the disk and at the edge. As a result, the 
guaranteed convergence is even fast, i.e., few expansion 

functions reconstruct the unknowns with a good accuracy. 

Moreover, the coefficient matrix elements are one-

dimensional improper integrals efficiently evaluated by 

means of the analytical procedure developed in [20, 21]. 

 

3 Numerical Results 
 

An approximate solution can be obtained by truncating 

the obtained infinite matrix equations. The convergence 

rate of the proposed method can be shown by introducing 

the following normalized truncation error: 

( ) ( ) ( ) ( )
1 12 2

, , 1 , ,

1 1

err
N N

n n n

r N r M r M r M
n N n N

M
− −

+
=− + =− +

= − x x x , (7) 

where 2N – 1 is the number of the considered harmonics 

estimated as in [24], ⋅  is the usual Euclidean norm and 

( )
,

n

r Mx  is the vector of all the expansion coefficients of the 

n-th harmonic of the electric/magnetic current evaluated 

using M expansion functions for each unknown.  

Figure 1a shows ( ) ( ) ( ){ }, ,err max err ,errN e N m NM M M=  

for the dielectric disk with 21000 10r jε −= − (this unusual 

value can be associated with one of the novel colossal-



permittivity materials [25]) and 0.001aτ =  near a 

whispering-gallery mode (WGM) resonance, i.e., for 

0.71707a λ = , when a TE polarized plane wave with 

1V/m
incE =  impinges onto the disk at grazing incidence. 

The overall number of harmonics used is 2 1 25N − = . 

Moreover, an error below 
1

10
−

 is obtained for 5M = , 

while 28M =  allows to achieve an error below 
2

10
−

. In 

the last case, about 40 seconds are needed to fill the 

coefficient matrix on a laptop equipped with an Intel Core 

I7-10510U 1.80GHz–2.30GHz, 16GB RAM, running 

Windows 10 Home 64bit by means of an adaptive 

Gaussian quadrature routine. Hence, the convergence is 
very fast in terms of both computation time and storage 

requirement. In figure 1b, the near E-field behaviour in 

the disk plane shows the classical necklace pattern of the 

field hot spots and a bright edge due to the singularity of 

the fields at the edge of the considered model. To 

conclude, the bistatic radar cross-section (BRCS) in the 
disk plane plotted in figure 1c shows, as expected, the 

shadow lobe in the forward direction and intensive 

sidelobes around the disk. 

 

 

 
 

Figure 1. (a) Normalized truncation error, (b) Near E-
field behavior, and (c) BRCS for the dielectric disk with 

21000 10r jε −= − , 0.71707a λ = , 0.001aτ = , when a 

TE polarized plane wave with 1V/m
incE =  impinges 

onto the disk at grazing incidence. 
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