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Calibration is one of the many crucial steps in the reduction of radio interferometric data. The processing require-
ments of instruments such as the MeerKAT and LOFAR are already pushing the limits of what can be accomplished
using existing calibration software. With both the Square Kilometer Array (Phase 2) and the Deep Synoptic Array
on the horizon, the need for parallel and scalable calibration algorithms and implementations is growing increas-
ingly urgent.

QuartiCal is a Python package that aims to address this need. As the spiritual successor to CubiCal [1], QuartiCal
makes similar use of complex optimization to perform fast and approximate gain calibration in an embarrassingly
parallel fashion. Like CubiCal, QuartiCal supports solving for chains of Jones terms (gains) and this functionality
has been improved to support the inclusion of parameterised terms. The flexibility this provides is unparalleled.

Where QuartiCal truly distinguishes itself from its predecessor is in its implementation. QuartiCal makes extensive
use of Dask [2], a Python package implementing dynamic task scheduling and parallel “Big Data” collections.
Dask allows appropriately written code to scale almost effortlessly from running serially on a single core to running
in parallel on a compute cluster. The embarrassingly parallel nature of QuartiCal’s gain updates is well-matched
to this design.

Dask is complemented by the use of Numba [3], a just-in-time (JIT) compiler for a subset of Python and NumPy
code. Numba makes use of the LLVM compiler library to produce highly optimised machine code at runtime. This
allows for the retention of Python’s simplicity and syntax whilst simultaneously providing C-like performance. In
the context of QuartiCal, Numba is used the optimise the most computationally demanding operations performed
on Dask’s parallel data structures.

QuartiCal is currently in early alpha testing. It has been deployed successfully on a ten node cluster and preliminary
results on real MeerKAT data have been promising. QuartiCal has been shown to be faster than CubiCal in addition
to reducing memory usage by more than an order of magnitude. This substantial improvement can be attributed to
QuartiCal’s functional design and emphasis on low-memory data structures.
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