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Abstract 
 
Today the generation of frequency combs nearly 
exclusively relies on passive mode-locking, requiring a 
phase lock between the longitudinal modes of a laser. In 
order to overcome the non-equidistance of the cold cavity 
modes, it is generally considered mandatory to include an 
effective saturable absorption mechanism in the laser 
cavity. However, there exist a number of experimental 
demonstrations of mode-locking or comb formation in 
which saturable absorption was clearly absent. Here we 
show that four-wave mixing may equally well lead to a 
mode-locking effect. However, the resulting pulse trains 
are only partially coherent, and the comb structures lack 
perfect equidistance. Operation of lasers in the pseudo 
mode-locked regime can easily be confused with 
traditional mode-locking. We discuss indications and 
characterization approaches for unveiling pseudo mode-
locking as well as limitations for application of pseudo 
combs.   

1 Introduction 
 
Mode-locking instabilities have a long history of fooling 
researchers into believing that they generated a coherent 
pulse train. Early mode-locking methods like synchronous 
pumping or slow absorber mode-locking of dye lasers are 
infamous for giving rise to a coherent artifact in 
autocorrelation measurements [1,2]. This coherent artifact 
has frequently been interpreted as evidence for the 
presence of stable mode-locking, but may equally well 
arise if the laser is only partially mode-locked and even if 
it operates as a simple multimode continuous wave laser. 
With the advent of mode-locked solid-state lasers with 
their long upperstate lifetimes, the coherent artifact has 
been considered a problem of the 1980s --- until the first 
reports of mode-locking of semiconductor lasers appeared 
that were clearly lacking a saturable absorption 
mechanism [3,4]. As saturable absorption is required to 
stabilize the mode-locking mechanism [5], the 
observation of self mode-locking gave rise to an extensive 
debate, which has not been resolved to date [6]. 
      Specifically, self mode-locking was observed in a 
number of different laser systems, including vertical-
cavity semiconductor lasers (VECSELs) and quantum 
cascade lasers (QCLs [7]). In semiconductor lasers, in 
general, upperstate lifetimes of the lasing transition are in 
the picosecond regime or even below, that is, they are 
much shorter than the cavity roundtrip time by orders of 

magnitude. In addition, these lasers include highly 
dispersive semiconductor materials inside the cavity, 
which lead to significant deviations of the cold-cavity 
modes from equidistance, in particular for the QCL case. 
This appears to be a rather hopeless case; if a short 
coherent pulse train is injected into any of these highly 
dispersive cavities, one would expect rapid dephasing and 
a resulting degradation of coherence. On the other hand, 
however, experimental demonstrations of QCL self mode-
locking indicate an intermode beat width of less than a 
kilohertz, which is substantially narrower than what one 
would expect in simple multimode continuous operation 
of a QCL. Moreover, self mode-locking exhibits the 
characteristic threshold-like behavior that is also observed 
for other passive mode-locking methods. 
     So far, no convincing explanation for this peculiar 
form of mode-locking has been reported. A Kerr-lensing 
mechanism has been suspected in self mode-locked 
VECSELs, and four-wave mixing effects are often quoted 
as the source of QCL comb formation [7,8], but neither of 
these explanations appears to satisfactorily explain how 
the extremely strong gain saturation can be overcome in 
any of these lasers. 
 
2. Haus Master Equation with a Four-Wave 
Mixing Nonlinearity 
 
In order to explore how four-wave mixing can possibly 
lead to a mode-locking effect, we followed the concept of 
the Haus master equation [5]. Haus master equation is 
typically written as a single partial differential equation. 
One then seeks stable solutions (or fundamental solitons) 
of this equation. However, the existence of a stable 
solution is only a necessary yet not a sufficient criterion 
for the stability of mode-locking, i.e., the soliton is not 
necessarily an attractor of the system, and small 
perturbations may then lead to destabilization of the pulse 
formation process. As four-wave mixing cannot be treated 
in a single equation, we resorted to writing the master 
equation as a system of nonlinearly coupled ordinary 
equations [9]. In the simplest three mode variant, this is 
written as  

 
Here we assume perfect phase matching of the mixing 

process, yet include dispersive effects with the 2 term. 



We further adopt the convention 1< 2< 3. Energy 
conservation then requires 1+ 3=2 2. The strength of 
the nonlinear effects is parametrized with ; 

is the mode spacing. Using real-
valued parameters and 2, the master equation suitably 
describes cavity soliton formation in passive microring 
resonators. Complex values of  allow for the inclusion of 
fast saturable absorption (or gain); an imaginary part of 

2 describes gain dispersion effects. 
In this simplistic version, we only consider degenerate 

mixing effects, and we end up with a three-mode 
description of the suspected mode-locking mechanism. 
Numerically solving the system of nonlinearly coupled 
differential equations with an Adams predictor-corrector 
method, we can in fact immediately observe a mode-
locking effect, which tends to lock two neighboring 
modes at a phase offset of /2.  Moreover, this locking 
effect can overcome dispersive effects as long as 2 

2 
<< , i.e., for weak dispersive effects. Seeding the model 
with random phases, we found that the locking effect is 
typically connected to the appearance of slow phase and 
amplitude oscillations, which appear at a period z0~1/ . 
Inserting typical material parameters, we convinced 
ourselves that z0 correspond to millions of roundtrips, 
which seems to match experimental observations [10]. 
Consequently, a peculiar situation arises, in which the 
standard definition of temporal coherence results in a 
value smaller than unity, that is, we only have partial 
coherence despite a mode-locking effect, that is, the 
phases of A1 and A3 are perfectly locked in our simple 
three-mode model. Four-wave-mixing based mode-
locking may therefore provide perfect intrapulse 
coherence while displaying a coherent artifact in all 
typical pulse characterization approaches. This finding 
appears to be key to understanding four-wave-mixing 
(FWM) mode-locking. 
 

 
Figure 1. Three-mode model. (a) Temporal evolution of 
the power in the central mode at frequency 2 (black) 
compared to the energy in either sideband 1 and 3 
(red). The total power is conserved. (b) Phases of the two 
resulting intermode beats at 2 1 (red) and 3 2 
(blue). Both beats exhibit a synchronous phase 
modulation at kHz frequency. In this simulation  was set 
to 10-6/roundtrip, and a small dispersion was included in 
Eqs. (1-3). Phases have been shifted by 0.2 rad for clarity 
 

It is now relatively straightforward to expand the 
model to a larger number of modes, considering both, 

degenerate and non-degenerate mixing processes.  Using 
an 11-mode model, we searched for stable eigensolutions 
(or solitons) of the master equation. For anomalous 
dispersion, we find the solutions with bell-shaped spectra 
that strongly resemble fundamental solitons of the 
Nonlinear Schrödinger Equation. Quite interestingly, 
however, we also find soliton solutions in the absence of 
dispersion, for higher-order dispersion, and for normal 
dispersion. The latter case is depicted in Fig. 2 and 
exhibits a concave spectral shape that is reminiscent of a 
gray soliton. In the time domain, this peculiar spectral 
shape translates into a sinc-like pulse shape. It is 
important to note that the solution is only stable when the 
spectral shape exactly matches to the soliton solution 
found for a given dispersion. Even small deviations from 
the exact shape immediately results in breather solutions 
of the equation.  
 

 
 
Figure 2. Characteristic soliton solustions of the FWM 
master equation for the normal dispersion regime in the 
spectral domain (left) and time domain (right). 
 
3. Breather Solutions 
 
Solving the above equation with random seeded phases of 
the Ai, we observe, in fact and quite surprisingly, a tight 
phase lock between the modes. However, the lock is not 
stationary, and energy is periodically transferred from the 
spectral center to the wings and back. Similar oscillations 
appear in the phase structure and lead to the formation of 
breather solitons, with breathing periods on the order of 
thousands or even millions of cavity roundtrips, see Fig. 
3. Given the temporal variation of the spectral phases, 
pulses in a breather pulse train are only partially coherent, 
that is we have mode-locking without perfect coherence. 
This previously undiscovered regime of mode-locking is 
therefore best described as pseudo mode-locking. This 
dynamic mode-locking process is probably best 
understood in the analogy of the rotating saddle lock, 
which is used to describe trapping of a charged particle in 
a Paul trap [11]. If a ball is placed not exactly in the 
center of the rotating saddle, it will also initially perform a 
periodic movement. Because of dissipation (friction), this 
oscillation is damped and will eventually force the ball 
into the stable central position in the rotating saddle. In a 
similar fashion, we also find stable soliton solutions for 
our equation. However, these solutions have a flat spectral 
phase and only exist in the absence of gain saturation. 
 



 
Figure 3. Interpulse coherence is plotted in (a). This 
shows that the pulses cannot be retrieved by conventional 
methods that assume perfect interpulse coherence. Sample 
pulses are plotted in (b-e), showing how the pulses vary 
from negative to positive chirp while maintaining an 
almost constant temporal width. 

4. The Coherent Artifact of Pseudo Mode-
Locking 
 
As previous characterization attempts have apparently 
missed the partially coherent nature of the pulse train, we 
asked ourselves what would be necessary to 
unambiguously detect pseudo mode-locking. Previous 
characterization efforts nearly exclusively relied on 
autocorrelation variants, which have no built-in 
redundancy to point out contradictions from the 
assumption of a stable pulse train [2]. As frequency-
resolved optical gating (FROG) is the most established 
technique that overcomes this shortcoming, we computed 
an averaged FROG trace from the simulated data of a 
breather soliton in Fig. 3. Quite characteristically, these 
FROG traces show a coherent artifact at delays of +/- 20 
time units in the spectral centrum, see Fig. 4(a). This 
artifact region cannot correctly be reconstructed using 
standard FROG retrieval algorithms [2]. However, if we 
use a mixed-state reconstruction approach [12,13] (as 
established for the characterization of free-electron laser 
pulses), we obtain a perfect reconstruction that also 
clearly unveils the presence of a degraded coherence of 
the pulse train [Fig. 4(b)] 

 
Figure 4 (a) Average FROG trace of the pulses in Fig. 1. 
This FROG trace shows a coherent artifact and cannot be 
retrieved with standard algorithms. (b) Retrieved FROG 
trace using mixed-states reconstruction. 
 
5. Conclusions 
 
In conclusion of our study it does not appear overly 
surprising that the partially coherent nature of pseudo 
mode-locked pulse trains has previously been frequently 
overlooked. Laser that show this peculiar mode-locking 

behavior show many indications of regular mode-locking, 
including a threshold-like onset of the mode-locking and 
narrow intermode beats. Even when using rather 
sophisticated measurement techniques like FROG, the 
resulting coherent artifact is rather subtle and clearly 
deviates from previously reported artifacts. Standard 
retrieval algorithms may therefore easily miss the 
coherence degradation in the pulse train. On the other 
hand, pseudo mode-locking shows superior coherence 
properties compared to multimode continuous-wave 
lasers. Using the analogy of transitions between the gas, 
liquid, and solid phase, pseudo mode-locking can be 
compared with the liquid state, which only exists for 
pressures and temperatures above the triple point. Solely 
regarding the aspect of density, liquids and solids are 
virtually indistinguishable, yet, liquids cannot provide the 
feats of continuum mechanics, either. Pseudo mode-
locking therefore may serve as an intermediate conveyor 
mechanism in the mid-infrared, which is nevertheless 
limited to precisions in the 10-10 level or below. If we 
understand “equidistant” as an absolute term then 
microresonator or QCL combs are clearly not equidistant.  
Nevertheless, these effects do not seem to corrupt certain 
applications, e.g., in dual-comb spectroscopy as they do 
not require precisions below the 10-10 level. 
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