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Abstract

We present a description of the spatial evolution of quan-
tized discrete-mode operators along a lossy nonlinear trans-
mission line. The nonlinearity is formed by hundereds or
even thousands of Josephson junctions which are placed pe-
riodically along a microwave transmission line. Dissipation
is added to the system Hamiltonian by coupling the nonlin-
ear transmission line to an Ohmic bath. Using the Hamil-
tonian of the open quantum system, Heisenberg equations
of motion for the discrete mode operators can be derived in
terms of quantum Langevin equations. The temporal equa-
tions of motion are then translated to the spatial domain
to investigate the performance of a nonlinear four-wave-
mixing process, while signals propagate along the transmis-
sion line.

1 Introduction

Superconducting microwave amplifiers are a key build-
ing block for the realization of high fidelity qubit readout
circuits in ultra-low temperature quantum computers [1].
These amplifiers utilize Josephson junctions as nonlinear
elements, where the amplification occurs due to a wave-
mixing process. A Josephson junction is an arrangement
of two superconductors that are weakly coupled across a
thin insulating barrier [2, 3]. It has been demonstrated that
Josephson junctions can be used for parametric amplifica-
tion [4], microwave harmonic generation [5], and for the
realization of quantum bits [6]. Josephson parametric am-
plifiers are particularly interesting for ultra-low noise ap-
plications, as their added noise approaches the quantum
limit [7, 8]. To achieve a high parametric gain, the interac-
tion time of the Josephson nonlinearity and the microwave
signal needs to be maximized. One approach is to place a
single Josephson junction inside a microwave cavity, which
leads to an increased parametric gain in the reflected signal
at the expense of instantaneous bandwidth [9]. A first quan-
tum mechanical treatment of such a DC-pumped Josephson
parametric amplifier (JPA) was given in [10]. Cavity losses
and thermal noise in a quantum mechanical model of a JPA
have been discussed in [11].

In a different architecture [12], the interaction time is
maximized by periodically embedding Josephson junctions

into a microwave transmission line, enabling parametric
amplification of microwave signals along the propagation
path. Such a Josephson traveling-wave parametric ampli-
fier (JTWPA) avoids the bandwidth limitations imposed by
a resonant cavity. The parametric amplification is, however,
strongly phase-dependent, which requires proper dispersion
engineering to achieve a sufficiently large gain [9]. The
four-wave-mixing process in a resonantly phase-matched
JTWPA can be described by a continous nonlinear wave
equation [12], from which coupled mode equations can be
derived for the amplitudes of the respective pump, signal,
and idler contributions [9]. Quantum mechanical descrip-
tions for a JTWPA are given in [13] and [14] for continous
and discrete-mode quantization, respectively.

We have previously introduced noise and dissipation in a
circuit quantum electrodynamic description of a JTWPA
in [15]. There, we derived a quantum model for the tem-
poral dynamics of a JTWPA including noise and dissipation
due to the imperfect substrate insulation. However, because
of the nonlinear dispersion, each individual mode spends
a different amount of time traveling along the amplifier.
Therefore, special care must be taken when considering co-
rotating frames for the individual discrete mode operators.
In this work, we circumvent this problem by considering
the spatial evolution of the mode operators instead.

In section 2 we revisit the theory of parametric amplifica-
tion and demonstrate how we model dissipation and fluctu-
ation in terms of quantum reservoir theory. The quantum
Langevin equations for the individual modes in the spatial
domain are derived in section 3. After a series of approx-
imations, we present an analytic solutions for the input-
output relation of the signal mode. In section 4, we compare
the results for the dissipative case to non-dissipative results
from the literature.

2 JTWPA Model and Reservoir Coupling

We consider the nonlinear transmission line structure of a
JTWPA as given in [12]. The circuit is implemented as
a lumped element coplanar transmission line comprising
hundereds or thousands of unit cells with a cell length of ∆z.
Each unit cell contains a single Josephson junction, where
the Josephson junction capacitance is modeled by a parallel
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Figure 1. Unit cell of a JTWPA. The resonant phase match-
ing circuit and a resistive representation of the bath is high-
lighted in blue and orange color, respectively. The bath
adds noise to the system via the current source, and dis-
sipates energy through the resistor.

capacitor CJ, while the line inductance is neglected com-
pared to the Josephson inductance. The circuit diagram of
the unit cell is given in Figure 1.

Parametric amplification is achieved through a wave-
mixing process, where energy is transfered from a strong
pump tone to the respective signal mode [16]. In a JTWPA,
this process is a result of the nonlinear response of the
Josephson inductance to the field passing through the trans-
mission line [14]. Depending on the type of the nonlin-
ear response [17], we distinguish between three- and four-
wave-mixing. In the following, we consider non-degenerate
four-wave-mixing with a degenerate pump mode. Due to
self- and cross-phase-modulation there is a strong nonlinear
contribution which is to be added to the linear dispersion.
We use dispersion engineering to improve the amplifier’s
performance. A resonant phase shifter consisting of an LC-
resonator and a coupling capacitor is added in each unit cell
to achieve resonant phase-matching (RPM) [9].

The electric field propagating though a conventional trans-
mission line experiences resistive and dielectric losses. The
resistive dissipation occurs due to the finite conductivity
of the material that forms the line, while the dielectric
losses originate from the imperfect electric insulation of
the substrate medium [18]. For superconducting traveling-
wave parametric amplifiers, only dielectric losses need to
be taken into account. In our quantum model of dissipa-
tion, a bath representing a photon field in thermal equi-
librium is coupled to the system [19]. The bath consists
of an infinite series of harmonic oscillators with densely
spaced frequencies ωn. The total Hamiltonian of the dis-
sipative system with reservoir coupling is then given by
Ĥtotal = Ĥsys + Ĥbath + Ĥcoupling, where Ĥsys is the Hamil-
tonian of the unperturbed system, Ĥbath describes the heat
bath, and Ĥcoupling represents the system-reservoir interac-
tion.

3 Spatial Evolution and Analytic Solution

We consider right-propagating discrete sinusoidal modes.
The lossless system is described in terms of the discrete-
mode operator Hamiltonian ĤCP

TWPA from [14], assuming a
strong classical pump current. As we consider signal en-
ergies in the range of single microwave photons, pump de-
pletion due to the four-wave mixing process is neglected.
We also neglect coupling of the pump mode with the dis-
sipative bath. The resulting total Hamiltonian, as well as
the respective equations of motion for the signal, idler, and
pump modes, follow analogous to [15].

The temporal Heisenberg equations of motion are mapped
to their spatial counterparts by the relation −ωn∂ t = kn∂ z,
where ωn is the angular frequency of the n-th mode and kn is
the associated wave number. Hence, the spatial Heisenberg
equations are given by

∂zâs = i(ks +δs) âs− i
ks

ωs
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gs,nâs + i

kn

ωn
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where â†
j and âj with j ∈ {s, i} are the respective creation

and annihilation operators for a photon in the signal or idler
mode, χ ′ is the four-wave-mixing interaction strength as
given in [14], and δ j = k jξ

′
j

∣∣Ap,0
∣∣2/ω j, where ξ ′j are coef-

ficients related to the critical current of the Josephson junc-
tion and to the dispersion relation, with j ∈ {s, i,p}.

The classical pump amplitude Ap evolves according to

∂zAp = i
(
kp +2δp

)
Ap , (4)

which can be solved analytically. By a formal integration of
(3), we obtain the bath operators b̂n in terms of the system
operators and random zero-mean fluctuations b̂n,0. Insert-
ing the formal integral into (1) and (2), we obtain a sys-
tem of two coupled operator equations of motion, contain-
ing randomly fluctuating terms. We switch to a co-rotating
frame Â j = â je−i(k j+δ j+∆kT/2)z, with j ∈ {s, i} in order to
simplify the resulting equations. The total phase mismatch
∆kT is defined by

∆kT = 2kp− ks− ki +2δp−δs−δi . (5)

In a next step, we replace the summation over infinitely
many densly spaced modes in (1) and (2) by an integra-
tion over the wave-vector dependent one-dimensional den-
sity of states D (k), assuming a Markovian memory-less
system [19]. Dropping all fast oscillating terms at non-
resonant frequencies, the spatial Heisenberg equations of
motion are given by
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∂zÂi =−
(

γi

2
+ i

∆kT

2

)
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with the damping factors γs and γi [19]
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The noise operators f̂s and f̂i in (6) and (7) result in
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The system of coupled first-order differential equations can
be solved analytically with standard methods. The annihi-
lation operator of the signal mode is given by
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where we introduce the gain factor
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and the coefficient functions
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The first and second lines in (11) are related to the four-
wave-mixing induced parametric amplification. Dissipa-
tion is taken into account by the exponential damping term,
depending on the damping factors γs and γi. The last four
lines contain the contributions of thermal noise photons.
Our solution to the signal annihilation operator is similar
to [20]. There, however, the noise contributions due to the
signal-bath coupling are not given explicitly. The coupling
constants gs,n are chosen to form an Ohmic bath [21], mod-
eling the dielectric losses along the transmission line due to
the imperfect substrate insulation.

From the analytic solution of the signal photon annihilation
operator, we can calculate the average photon number at
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Figure 2. Comparison of the signal photon number at the
output of a JTWPA for the dissipative and non-dissipative
case, with and without RPM. The Josephson capacitance
CJ = 329fF and the critical current Ic = 3.29µA.

any spatial location along the JTWPA nonlinear transmis-
sion line. Neglecting the noise contributions, the expected
number of signal photons at a certain spatial location z is
given by

〈
Â†
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It can be shown that those correlations vanish, if either the
signal or the idler mode is initially given as a number state.

4 Evolution of the Signal Photon Number

In Figure 2, the finite substrate resistance becomes visible
when comparing the average number of photons in the sig-
nal mode after propagating through a JTWPA of length l
with the ideal case, assuming a perfectly insulating sub-
strate. We predict the average number of signal photons
by evaluating (15) with the parameters from [14]. The pho-
ton number is evaluated for different signal modes with fre-
quencies fs, with and without RPM. At the input, we as-
sume a single photon in the signal mode and no idler pho-
tons. The pump frequency is kept constant at 5.97 GHz with



a pump current of Ip = 0.5Ic. The signal frequency is varied
in a range from 0 GHz to 12 GHz. The total length of the
nonlinear transmission line is chosen to be 20 mm, where
the line impedance is ≈ 50Ω. Damping factors are chosen
in the range of 4 m−1 to 5 m−1.

5 Conclusion

We have presented a model for the spatial evolution of
discrete-mode operators based on the mesoscopic Hamilto-
nian from [14], including noise and dissipation. A closed-
form analytic solution has been derived, and used to predict
the expectation value of the signal photon number at the
output of a JTWPA. The signal photon number at the output
of the JTWPA has contributions from the four-wave-mixing
process and the down-converted idler photons. The signal
mode experiences exponential damping from the system-
bath interaction. The difference in the output photon num-
ber when considering imperfect substrate insulation has
been visualized using an examplary JTWPA structure. The
spatial system dynamics have been investigated assuming
a classical undepleted pump mode. In the scope of further
research, we propose to take pump losses into account, as
the gain coefficient is directly proportional to the pump am-
plitude.
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