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Abstract 
 
We review the progress of the BS approach, starting from 
the original Greens function formulations in the frequency 
and time domains; the Gabor-series formulations for 
aperture-source distributions; the UWB phase-space 
formulations; and up to the beam frame formulations with 
applications to propagation in fluctuating medium and 
local inverse scattering.  
 
1 Introduction 
 
Wave propagation in complicated media is typically 
described by ray methods. The difficulties of this 
algorithmically intuitive representation stem from the loss 
of most of the spectral flesh that is structured upon the ray 
skeleton. As a result, the ray solutions fail in many 
complicated scenarios such as near caustics; short-pulse 
propagation where the ray solution describes only the first 
impact of the signal; rough or fluctuating media where the 
ray solutions may address only the lowest order moments, 
etc. Furthermore, proper coverage of the propagation 
domain requires the tracking of a dense lattice of rays, 
which becomes computationally intensive, and often 
chaotic.  
 
The loss of spectral flesh may be addressed by 
constructing the local spectrum above the ray skeleton 
(e.g., Maslov's formulation), but this process is 
computationally expansive and often unstable since each 
plane wave constituent is, by definition, a global object.  
 
2 Beam Summation  
 
The difficulties discussed in the preceding paragraph 
regarding the difficulties in constructing the spectral 
propagators are circumvented in the beam summation 
(BS) approach since the beam propagators are a priori 
localized. The BS is a local-spectrum representation that 
is structured upon the ray skeleton in the propagation 
domain, and thus it combines the asymptotically uniform 
features of the spectral representation with the algorithmic 
ease of the ray representation. Furthermore, unlike the ray 
representations that are highly sensitive to the local 
fatures of the medium along the ray path, and therefore 
tend to be chaotic, the beam propagators are more stable 
since they depend on the local average of the medium 
properties along the beam path (e.g., in a fluctuating 
medium). Finally, the local spectrum representation also 

resolves the local features of the sources and the local 
propagation-physics, thus describing the overall field 
interaction with the medium using only a few beam-basis-
functions. Here and henceforth we use the generic term 
"beam waves" for both the frequency-domain and the 
time-domain formulations, where the propagators are iso-
diffracting Gaussian beam (ID-GB) or iso-diffracting 
pulsed beams (ID-PB), respectively.  
 
3 Beam Frames 
 
So far, the BS methods were based on beam expansions of 
point sources or of aperture sources. The beam frame 
(BF) is a new concept where a properly constructed 
phase-space set of beam waves constitutes a frame 
everywhere in the propagation domain thus can be used 
for local expansion not only of the sources but also of the 
medium. This transforms the problem of tracking waves 
in complicated media into a self-consistent local-spectrum 
diagrammatic formulation where the same beam-set is 
used to expand both the sources, the medium, and the 
local interaction of the field with the medium. 
 
This presentation reviews the progress of the BS 
approach,  

(i) starting from the original Greens function 
formulations in the frequency [1-4] and time [5-7] 
domain;  

(ii) the Gabor-series formulations for aperture-source 
distributions [8,9];  

(iii) the UWB phase-space formulations [10-12]; 
(iv) and up to the beam frame formulations [13-15] 

with applications to fluctuating medium scattering 
[13,14] and local inverse scattering [16-18].  
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