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Use of sparsity in nonlinear electromagnetic imaging: wavelet-based contrast source method
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Abstract

A contrast source inversion (CSI) algorithm is developed
in the wavelet domain in order to tackle nonlinear electro-
magnetic inverse scattering with the benefit of sparsity. The
soft-thresholding technique is applied here to sparsify the
reconstruction. Numerical results show the potential of the
proposed approach to improve the quality of reconstruction
compared to the original CSI method.

1 Introduction

Electromagnetic inverse scattering problems have to be
tackled in order to get the geometry and/or the distribu-
tion of physical parameters of an object from the knowledge
of fields it scatters (see [1, 2]). Various inversion methods
have been proposed, such as Born iterative method (BIM)
[3], contrast source inversion (CSI) [4] and subspace-based
optimization method (SOM) [5]. Due to the use of the non-
linear integral equation and the lack of information, elec-
tromagnetic inverse scattering problems usually suffer from
non-linearity and ill-posedness. The implementation of sta-
ble and effective algorithms is challenging.

The wavelet bases are often used to represent a given pro-
file with low number of non-zero coefficients without a
significant loss of resolution, and the incorporation of the
wavelet transform into classical inversion methods has been
much investigated. In [6], the unknown contrast and in-
duced current are represented using a wavelet basis and up-
dated with multiplicative regularized CSI method, which
greatly improves the performance compared to CSI in the
spatial domain. The SOM method has also been applied
in the wavelet domain in [7]. The performance of different
wavelet bases has been analyzed and it has been proved that
the use of wavelet transform can improve the resolution of
specific region of a scatterer. In [8], a wavelet-based joint
£1—¢; norm minimization technique within the BIM frame-
work has been proposed.

Our work aims at developing a CSI method in the wavelet
domain, at the same time, incorporating the sparsity into
this framework due to the great potential of sparsity to ef-
fectively tackle the inverse problem and its robustness to

noise [10]. To this end, the contrast function and the equiva-
lent current are both represented and updated in the wavelet
domain, by minimizing the cost function in the wavelet do-
main using the conjugate-gradient (CG) method. Herein,
the sparsity is enforced on the wavelet coefficients using
the soft-thresholding technique.

This contribution is organized as follows. The formulation
of the forward problem is considered in Section 2. The orig-
inal CSI method and its application in the wavelet domain
is provided in Section 3. In Section 4, numerical results
are discussed including the comparison between original
CSI and wavelet-domain CSI. In Section 5, conclusions are
given and future research topics discussed.

2 Formulation of the forward problem

Herein, the scenario in Fig. 1 is considered. We focus on a
time-harmonic two-dimensional (2D) electromagnetic scat-
tering problem for transverse magnetic (TM) polarization.
The object is embedded in a homogeneous medium D with
permittivity of air & and permeability yy. Denote & (r)
and o(r) the relative permittivity and conductivity of the
medium as r € D is an observation point. The object is il-
luminated by TM waves generated by N, sources located at
positions ry. For each illumination, the scattered fields are
collected by N, receivers located at positions r, on a line of
observation S. Time convention is assumed as e ', @ the
angular frequency.

Source(s) .-
s

N

e ,<--~"‘/Receiver(5)

Figure 1. Configuration of the inverse scattering problem
and the source-receiver locations

The scattered electric field E%f(r,,r;) collected by a re-
ceiver placed at r, and associated with the source placed at



I, satisfies the integral equation
ES(ry,1) = [ Gl a1
D

with
J(r,rs) = x(r)E(r,ry) 2)

G(r,r’) is the Green’s function which represents the elec-
tromagnetic response to a line source radiating in free-
space. In the case of two dimensions, it is given by

—io 1 1
G(r,r') = =y (ky|lr — r'||), where H"
order Hankel function of the first kind.

is the zero-

The contrast function x(r) is defined as k*(r) — k%, where
K(r) = weoe, (1) o + i0p0 (r), K = @ eotty. J(r, )
and E(r,ry) are the equivalent current and the total elec-
tric field respectively, both induced within the object by the
incident wave.

The total electric field can be obtained according to
E(r,rg) = E™(r,ry) +/ G(r,v')J (¥ ,r5)dr’ Vvr e D (3)
D

where E™™(r,ry) is the incident field. Using a method of
moments, the domain D is discretized in N small square
pixels so that the electric field and the contrast can be con-
sidered as constants within each one. The discretized ver-
sion of the previous equations stands as

EST(r) = GJi(r) i=1,...,N resS @

E(r) =E™(r)+GpJi(r) i=1,....N; reD (5

where El?iiff(r) is a complex vector of size N,, and E}“C(r),
E;(r) are complex vectors of size N. Gy is a complex matrix
of size N, x N, Gp a matrix of size N x N. The subscripts
D and S of the operators indicate the location of the point r,
and the operators are identical in all other aspects:

Gp, sJi(r) = k%/ G(r,r')Ji(r'Ydr'  reDorreS (6)
D

The forward problem is defined as the calculation of
EY(r) from the knowledge of x(r) and the inverse scat-
tering problem is to retrieve x(r) from E&(r), which is
nonlinear and ill-posed.

3 Wavelet-domain contrast source inversion
method

The CSI method is one of the most used methods to tackle
the inverse scattering problem. First, by combining Eq. (2)
and (5), the state equation is defined as

Ji(x) = x(0)[EM(r)+ Gp(Ji(x))]  reD (]

and the data equation as
filr)=Gsli(r)  res ®)

The cost function is a combination of two normalized
terms:

YN = G2
AR

F(Ji,. N x) =

©)]
Y X ERe + xGp(J) — il
Y IXE™|3,

where |- ||% and || || denote the norms on L?(S) and L(D),
respectively.

+

The CSI method alternatively constructs sequences of con-
trast sources Jix (i =1,...,Ny,k =1,...,K where K is
the number of iterations) by a conjugate gradient iterative
method such that the contrast sources minimize the cost
functional, and the contrast y; is then determined by mini-
mizing the error in the state equation. The initial guess for
the contrast source and of the contrast function is obtained
by back-propagation:

G:f: 2
o GsGsfills
YiJiiEi
= SRl (11)
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Inspired from [6], we can apply the CSI method in the
wavelet domain. First, let us define the wavelet transform
as W and its inverse as W*. || - |3, and || - ||3,, indicate the
norms on L*(S) and L?(D) in the wavelet domain. The data
equation and the state equation can be written as

fi=Gs(W*y) 12)
1= W{W*B)E} + W{(W'B)Gp(W* )} (13)
where v, = WJ;, B = Wy.
Now, let us define the data error as
pi = fi—Gs(W"y) (14)
and the object error as

ri = W{(W*B)E]"} — %+ W{(W*B)Gp(W*)} (15)

The CSI cost function in the wavelet domain is given by

Zg\i] |fl - GS(W*YI)ng

F(n,...w,.B) =

+Z?§1 IW{W*B)E™} + W{(W*B)Gp(W* %)} — %ill b
L IWEW*B)E I3,

(16)



Then, ¥ and f; are constructed alternatively by minimiz-
ing the wavelet-domain cost function. A summary of the
CSI method in the wavelet domain is in the algorithm be-
low.

By applying the wavelet transform on the contrast source
and the contrast function, two sets of decomposition coef-
ficients can be obtained: approximation and detail coeffi-
cients. The approximation coefficients describe the general
form of the profile, while detail coefficients represent the
finer details of the profile. Our goal is to enforce the spar-
sity on the detail coefficients.

Algorithm Contrast source inversion in the wavelet domain

L. GLfil2
1: Initialize ﬁ’f = W{%Ggﬁiﬁ}

o Li(W*%0)Eio }
Bio= W{ ¥i|Eiol?
: Compute the normalization coefficients
: ns = (Ll All5,) "
fork=1,...,Kdo
Compute the normalization coefficients
Mok = L [W{W*BOE™ } B,
Updating of the Contrast Sources
Compute the gradient
gl = —NsW{Gspis}—
Mo {rik —WGH(W*Br) (W*rig)]}
11: Compute the update direction v; ; =
g] n ReZi<g{7kvg,{k_g{7k_1 >Dw
ik Zi<gﬁk_1 7g,{‘k_1 >Dw
12: Determine the step size a,{ =
_R32i<g,{kavi,k>Dw

R A A R i

._
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Vik—1

Ns Xi IGs(W*vi i) 1 3+Mp .k i [[vi = W{(W*B) Gp (Wi i) I3,

13: Update % by Yix = Yik—1 + O vik

14: Updating of the Contrast

15: Update the field E; = E/} + Gp(W*Yix)
16: Update B; by By =W {%ﬂff”}

17: Check stopping criterion ’

18: end for

Consider an approximation coefficient as a parent coeffi-
cient, all detail coefficients of the same orientation in the
same spatial location are defined as its children coefficients.
According to [9], a wavelet coefficient x is said to be in-
significant with respect to a given threshold 77 if |x| < Tj.
If a parent coefficient is insignificant, then all of its chil-
dren coefficients are said to be insignificant. Through this
relationship, the positions of significant detail coefficients
of an image can be determined from its approximation co-
efficients.

The first step of our approach is to update only approxima-
tion coefficients to obtain a preliminary result. Then, the
positions of significant wavelet coefficients can be deter-
mined based on this result. The second step is to launch
again the algorithm to update the significant detail coeffi-
cients and to get a finer result with the previous result being

the initial model. At the same time, the soft-thresholding
is applied to set to zero the elements whose absolute values
are lower than the threshold value 7, and then to shrink the
non-zero detail coefficients toward zero.

4 Numerical results

In the numerical simulations, the well-known “Austria”
profile which contains two disks and one ring is used.
The disks of radius 0.2 m are centered at (0.3,0.6) m and
(—0.3,0.6) m. The ring has an exterior radius of 0.6 m and
an inner radius of 0.3 m, and is centered at (0,0.2) m. The
true value of the relative permittivity of the object is 2, and
itis 1 for the embedding medium.

The region of interest D is [ = 1.334 sided where A is the
wavelength in air, and it is discretized into Ny X Ny = N
square cells. The discretization sizes for the direct and in-
verse problem are different in order to avoid the “inverse
crime”. Each cell is collected from N, receivers when il-
luminated by Ny transmitters at 500 MHz frequency. The
transmitters and receivers are evenly distributed on a circle
of radius r = 2.54. Gaussian noise with SNR of 20dB is
added to the data. In our simulations, we have also applied
positivity constraint by projection method [4]. The wavelet
basis used in the simulations is the Haar wavelet, and the
level of wavelet decomposition J = 1. The threshold value
T is the 85th percentile of approximation coefficients, and
T; is set to the minimum value of the significant approxi-
mation coefficients.

In the following, three methods are discussed including
spatial-domain CSI, wavelet-domain CSI using all coef-
ficients and wavelet-domain CSI using only significant
wavelet coefficients with the soft-thresholding step respec-
tively named as CSI, W-CSI and W-CSI-ST. In order to
evaluate the performance of the reconstruction, we define
the relative error as

_ HXreconstructed — Xtrue ||2
err = 5
| Xtrve |l

Table 1 shows the relative error err of the discussed meth-
ods. We can see from the result that the proposed method
ensures better quality of reconstruction when Ny and N, are
small but about the same quality (at the price of increasing
CPU time) when N; and N, increase. In addition, a statis-
tical study was carried out on 100 samples of err obtained

A7)

Table 1. Errors of reconstruction err with different {N; x
N,}

Ny x N, CSI  W-CSI W-CSI-ST

6x18 0.3390 0.4150 0.2038
9x18 0.1798 0.1852 0.1738
12x18 0.0981 0.1200 0.1263
8x32 0.1192 0.1239 0.1379
16x32 0.0869 0.1012 0.1172




using three methods with small Ny and N,, and WT-CSI-ST
gave the lowest err in every single test.

As an illustration, a comparison of the final results for Ny =
6 and N, = 18 is shown in Fig. 2. As expected, W-CSI-ST
(Fig. 2d) provides a better and smoother results than CSI
(Fig. 2b) and W-CSI (Fig. 2c¢) when using a small number
of sources and receivers at a CPU time cost of 150 s for K =
500 compared to 22 s and 75 s respectively. The machine
that has been used has a processor such as: Intel Core 19
CPU@2.9 GHz.
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Figure 2. Real (left) and imaginary (right) parts of true
model (a), and reconstructed model using CSI (b) and
wavelet-domain CSI without (c) and with sparsity con-
straint (d) for Ny = 6 and N, = 18.

5 Conclusion and future work

A new approach has been proposed in order to solve the
inverse scattering problem with strong non-linearity by en-
forcing the sparsity through the soft thresholding in the

wavelet domain. The proposed approach has been com-
pared with the original CSI method and the wavelet-domain
CSI method without soft-thresholding step. As the situation
is strongly nonlinear, both algorithms are not able to recon-
struct the profile perfectly. However, the use of sparsity in
the wavelet domain does improve the quality of reconstruc-
tion. Future research will be on the accurate determination
of hyperparameters and the test of other wavelet bases such
as the Daubechies 4.
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