

URSI GASS 2021, Rome, Italy, 28 August - 4 September 2021

High-Performance Radio Telescope Array Data Processing Framework

Max W. Hawkins*(1), Daniel J. Czech(2), David H.E. MacMahon(2), Steve Croft(2,3), and Andrew P.V. Siemion(2,3)

(1) University of Alabama, Tuscaloosa, AL, 35401; email: mhawkins2@crimson.ua.edu

(2) University of California at Berkeley, Berkeley, CA, 94720; email: danielc@berkeley.edu; davidm@berkeley.edu

 (3) SETI Institute, Mountain View, CA, 94043

Abstract

As radio telescope projects grow larger with more antennas

observing wider bandwidths, data rates are rapidly

increasing. The Square Kilometer Array and other next

generation observatories will usher in an era of exascale

data and beyond [1]. This necessitates an equivalent

increase in data transfers, processing speeds, and emphasis

on real-time analysis. Reducing the performance gap

between high-level science algorithm development

(frequently in Python) and real-time, production code

would allow astronomers to better utilize the hardware

available to them. To enable this, we create a high-level

array data processing pipeline framework in the Julia

programming language, featuring templates for modular

data processing algorithms. We demonstrate its

performance with a spectral kurtosis algorithm and show

that the new interface does not introduce significant

processing overhead. In future work, we will explore the

signal processing potential of new hardware accelerators

present in modern GPUs. Such accelerators promise

improved performance along with new programming

challenges.

1 Introduction

Currently, most radio astronomy data is reduced at the

facility of origin before being sent to an astronomer for

final processing. This data reduction is necessary for the

final data volumes to be manageable, but it can also

eliminate potential signals present in the raw data. As data

rates increase, more scientific analysis must thus be done

in real-time at the observatory. Our research will ultimately

grant astronomers with limited programming knowledge

the ability to write and integrate custom scientific

algorithms into raw radio facility data processing pipelines.

1.1 Real-Time Data Processing

Most processing at other radio observatories follows, at the

highest levels, a somewhat similar design: digitize,

channelize, reduce, and store. The increased usage of

commodity digital hardware and necessity for distributed

1 http://seti.berkeley.edu

computing will likely result in a trend in observatory

pipelines to look more like the MeerKAT and SKA designs

[2]. The Very Large Array is adding Ethernet multicast

capabilities [3], and many other facilities are increasing the

role of GPUs in their computing infrastructure [4].

At the MeerKAT array, our initial target deployment

observatory, the real-time data pipeline runs as follows:

After coarse channelization, packets of complex antenna

voltage data are streamed to distributed compute nodes

over a network interface where they are reassembled into

sequential blocks of data and topped with a small header of

metadata. Next, the data is reduced in some preselected

fashion, stored in an on-site data silo for temporary storage,

then eventually disseminated for final storage or

processing.

Various low-level frameworks have been created to ease

the creation of these data pipelines. HASHPIPE [5],

PSRDADA [6], kotekan [7], and Pelican [8] are all low-

level frameworks written in C or C++ for radio astronomy.

As our work was initiated at the Berkeley SETI Research

Center1 and aimed for initial use at the MeerKAT array, we

chose to base development on HASHPIPE.

HASHPIPE is an evolution of the GUPPI data acquisition

pipeline, is written in C, and is used in various stages of

deployment at the Green Bank Observatory, Parkes,

MeerKAT, HERA, and the Allen Telescope Array [5]. It

creates shared ring buffers, assembles network packets,

manages processing threads’ access to data through

semaphore arrays, and continually updates block metadata

and a global status buffer. HASHPIPE is performant and

allows for custom plugin creation, but its inherently low-

level nature makes it inaccessible to many astronomers

who program primarily in Python. To allow for easier

future development, extensibility, and astronomer use, a

high-level framework is necessary.

There has been at least one such manifestation of this idea

in the past: Bifrost, which is a framework deployed at the

Long Wavelength Array in New Mexico [9]. However, it

relies on Python as the high-level interface. We currently

find Julia a more preferred language for future work.

1.2 Julia

The Julia programming language was chosen for this

project because it offers a high-level interface that is very

similar to Python, a common language used by many

astronomers, while also bringing performance that often

rivals C. Julia is dynamically typed, just-in-time compiled,

features multiple dispatch, and has powerful REPL and

interactive web notebook environments [10]. Its primary

benefit over Python is its speed. As a compiled language

(using LLVM), Julia’s performance is often more

comparable to C than Python. Julia also has capabilities to

directly call or be called from Python and C code. This

enables an easy transition for astronomers who do not have

to forego premade astronomical Python libraries.

Additionally, Julia has excellent high and low-level GPU

interfaces. By efforts to include GPU support into the Julia

compiler toolchain, GPU programming in Julia can be

simple and performant [11]. Python does have similar

acceleration libraries available like Numba or CuPy, but

these are implemented in a fundamentally different way.

Julia’s use of LLVM, which natively targets both CPUs

and GPUs, requires much less device-specific code and

enables a more wholistic compilation process. For more

details, refer to Besard [11], which outlines many of the

reasons we believe Julia has great potential in the future of

radio astronomy data processing.

2 High-Level Framework

To create a starting point to assess the feasibility of our

high-level framework, lightweight Julia wrapper functions

and structs were written to provide the functionality of

HASHPIPE. Current work is being done to integrate the

Julia and C interfaces more seamlessly through cross-

compiled binaries. Beyond an identical set of functions, the

Julia API enables additional improvements by leveraging

the expressive and data-focused nature of the language. For

example, HASHPIPE uses the legacy hget/hput library to

update header records. By using multiple dispatch

functionality, a set of header functions that depend on input

object type can be coalesced into a single function. This

functionality eliminates a potential source of error but is

not possible in C/C++.

To showcase this new Julia interface, we created and tested

a demo HASHPIPE processing thread that interacts with a

standard C-level HASHPIPE pipeline (Figure 1). This

setup was meant to mimic what an astronomer might

program as the final step in an existing real-time data

processing pipeline at a telescope array.

Data is sent to a processing node via UDP packets that are

then reassembled into a common astronomy data format by

a HASHPIPE C-thread. Then, when this thread signals a

portion of data is ready, the waiting Julia HASHPIPE

thread takes ownership of the data, asynchronously

transfers it to the GPU, runs the astronomer-selected

algorithm on the data, and transfers the results back to the

CPU. This cycle starts over again when the Julia thread

frees the original CPU data for the preprocessing thread to

overwrite with new data. The HASHPIPE status buffer

must be updated by all threads during the entire process.

Figure 1. Flow diagram of a commensal MeerKAT data

pipeline

In total, the code necessary to create the custom processing

thread that interacts with an existing C-level HASHPIPE

pipeline is ~120 lines – much of which can be used as a

template for any thread. Our benchmarks also showed this

code was sufficiently performant. The Julia processing

thread that does not compute or transfer any data (null

thread) runs in less than 0.5 milliseconds per data block.

Compared to an equivalent C-only thread, the Julia thread

incurred a negligible compute time penalty on the order of

10s of microseconds. By running our test thread setup, we

validated the feasibility of a high-level data pipeline

framework integrating with existing real-time HASHPIPE

pipelines. Current development work involves creating an

offline thread template for post-processing on personal

computers to speed up astronomers’ day-to-day processing.

This will reduce the barrier of entry into our codebase and

serve a more common workflow.

Next, we developed an algorithm template for our

framework. The goal is to have a modular set of performant

algorithms that can be chosen and chained together by an

astronomer. Rather than each astronomer having their own

custom algorithms, there can be a standard set of publicly

available algorithms that can be selected from and

extended as necessary. Further, by doing this in the Julia

programming language, a high-level GPU interface

resembling common CPU Python code is provided directly

to astronomers and allows for higher performance code

development. If further speed is needed, the Julia language

and LLVM compiler chain allow for low-level tweaks. In

the future, we also plan on adding automatic memory cost

calculations to determine if and how many simultaneous

sets of the calculation pipelines can be run on the given

hardware. This is especially beneficial for offline

processing and can mitigate data transfer dead time –

enabling better hardware utilization. With low arithmetic

intensity operations, data transfers become the

performance bottleneck.

To showcase this library, we created an example algorithm

using spectral kurtosis (SK) - a signal discriminator based

on the gaussianity of radio signals [12]. Naïve CPU and

GPU SK implementations were written to showcase Julia’s

expressibility. The only difference between the two

functions was a single conversion to interpret the data array

as either a normal array or a CUDA array. We then

integrated these algorithms into the new Julia test pipeline

and benchmarked their performance. Our test system

included dual-socket Intel Xeon Silver 4110s, 96 gigabytes

of RAM, and an NVIDIA 1080Ti GPU. The data we

calculated spectral kurtosis on was very similar to the

output data of the MeerKAT telescope array and was

processed in 128 megabyte blocks of complex, 8-bit

voltage samples across 2 polarizations, 32,768 samples, 16

coarse channels, and 64 antennas. Both spectral kurtosis

algorithms calculated SK over the entire time window

(largest integration length possible).

Table 1. Performance comparison of Julia spectral

kurtosis implementations on 128 MB data blocks

Implementation

Type

Time per Block

(ms)

Throughput

(GBs-1)

CPU 400 0.313

GPU 21 5.95

Table 1 shows the performance results of this experiment.

By editing a single line of code and utilizing a functionality

of Julia’s GPU interface, we showed a 19x performance

increase. This experiment highlights the possibilities Julia

offers as a high-level language. An astronomer can greatly

accelerate parallelizable algorithms easily. Although

similar processes may be applied in Python, future work

discussed in the next section will show the low-level

integration capabilities other languages do not offer.

3 Tensor Cores for Signal Processing

With a high-level GPU API available to astronomers, work

must be done to ensure efficient utilization of new

generations of hardware. Specifically, future work will

involve developing high-level astronomical algorithms in

Julia that use tensor cores. This will further increase

potential performance gains of our framework. With closer

integration into the compilation sequence and native

targeting of hardware accelerators, Julia is preferred over

Python for this work [11].

Tensor cores are hardware accelerators in NVIDIA GPUs

that execute fused matrix multiply-add calculations in a

single clock cycle. They can greatly accelerate matrix-

heavy algorithms and are especially beneficial for low

precision data. On NVIDIA’s A100 GPU, using tensor

cores increases computing throughput on full precision

floating point data by a factor of 8. For 8-bit data, the

throughput increase is 32x [13]. Sub-byte data types offer

further improvements but are still under active

development.

Although intended for machine learning, tensor cores have

potential to accelerate many signal processing algorithms.

Radio astronomy’s low precision (8-bit or lower) lends

itself well to tensor core use while common array

algorithms like correlation rely heavily on matrix

multiplication/addition. Previous work has shown 100x

increases in correlation throughput when compared to

default CUDA floating point arithmetic [14].

However, because of their machine learning origin, digital

signal processing algorithms have been relatively slow to

adopt tensor core use. Support for optimized low-precision,

complex number operations are slower to be added than

common machine learning tasks. Julia 1.5 only supports

half-precision base tensor core instructions, and CUBLAS

and CUDA gemm support for integer tensor core

processing is currently not fully developed. We aim to

include 8-bit tensor core functionality in Julia and from

there, build out high-level signal processing algorithms.

4 Conclusion

The future of radio astronomy signal processing holds

many foreseeable trends like larger data volumes, more

array-based observations, and increasing reliance on digital

hardware for processing. Combined with external trends of

cheaper commodity compute, the proliferation of hardware

accelerators, and improved compiler toolchains, the

necessity and usability of a high-level data pipeline

framework becomes apparent. We present a data pipeline

framework in Julia that preserves the performance of the

underlying low-level code while providing an accessible

high-level interface to enable astronomer access to on-site,

real-time processing. This could prove especially useful to

transient searches (FRBs or SETI), all-sky surveys, and any

commensal array observation.

5 Acknowledgements

Max Hawkins was supported by the National Science

Foundation under the Berkeley SETI Research Center REU

Site Grant No. 1950897.

Breakthrough Listen is managed by the Breakthrough

Initiatives, sponsored by the Breakthrough Prize

Foundation.

6 References

[1] A. M. M. Scaife, “Big telescope, big data: towards

exascale with the Square Kilometre Array,” Philos.

Trans. R. Soc. Math. Phys. Eng. Sci., vol. 378, no.

2166, p. 20190060, Mar. 2020, doi:

10.1098/rsta.2019.0060.

[2] J. R. Manley, “A scalable packetised radio astronomy

imager,” 2015, Accessed: Jan. 30, 2021. [Online].

Available:

https://open.uct.ac.za/handle/11427/15573.

[3] J. Hickish et al., “Commensal, Multi-user

Observations with an Ethernet-based Jansky Very

Large Array,” ArXiv190705263 Astro-Ph, Jul. 2019,

Accessed: Jan. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1907.05263.

[4] D. C. Price, J. Kocz, M. Bailes, and L. J. Greenhill,

“Introduction to the Special Issue on Digital Signal

Processing in Radio Astronomy,” J. Astron. Instrum.,

vol. 05, no. 04, p. 1602002, Dec. 2016, doi:

10.1142/S2251171716020025.

[5] D. H. E. MacMahon et al., “The Breakthrough Listen

Search for Intelligent Life: A Wideband Data

Recorder System for the Robert C. Byrd Green Bank

Telescope,” Publ. Astron. Soc. Pac., vol. 130, no.

986, p. 044502, Apr. 2018, doi: 10.1088/1538-

3873/aa80d2.

[6] J. Kocz et al., “Digital Signal Processing Using

Stream High Performance Computing,” J. Astron.

Instrum., vol. 04, no. 01n02, p. 1550003, Mar. 2015,

doi: 10.1142/S2251171715500038.

[7] A. Recnik et al., “An efficient real-time data pipeline

for the CHIME Pathfinder radio telescope X-engine,”

in 2015 IEEE 26th International Conference on

Application-specific Systems, Architectures and

Processors (ASAP), Jul. 2015, pp. 57–61, doi:

10.1109/ASAP.2015.7245705.

[8] B. Mort, F. Dulwich, C. Williams, and S. Salvini,

“Pelican: Pipeline for Extensible, Lightweight

Imaging and CAlibratioN,” Astrophys. Source Code

Libr., p. ascl:1507.003, Jul. 2015.

[9] M. D. Cranmer et al., “Bifrost: A Python/C++

Framework for High-Throughput Stream Processing

in Astronomy,” J. Astron. Instrum., vol. 06, no. 04, p.

1750007, Sep. 2017, doi:

10.1142/S2251171717500076.

[10] J. Bezanson et al., “Julia: dynamism and

performance reconciled by design,” Proc. ACM

Program. Lang., vol. 2, no. OOPSLA, p. 120:1-

120:23, Oct. 2018, doi: 10.1145/3276490.

[11] T. Besard, C. Foket, and B. D. Sutter, “Effective

Extensible Programming: Unleashing Julia on

GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 30,

no. 4, pp. 827–841, Apr. 2019, doi:

10.1109/TPDS.2018.2872064.

[12] G. M. Nita and D. E. Gary, “The generalized spectral

kurtosis estimator: The generalized spectral kurtosis

estimator,” Mon. Not. R. Astron. Soc. Lett., Jun.

2010, doi: 10.1111/j.1745-3933.2010.00882.x.

[13] V. Sarge and M. Andersch, “Tensor Core

Performance: The Ultimate Guide,” p. 36.

[14] J. Romein, “Tensor Cores: Signal Processing at

Unprecedented Speeds,” presented at the GTC

Silicon Valley Session S9306, 2019.

