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Abstract 
 

As radio telescope projects grow larger with more antennas 

observing wider bandwidths, data rates are rapidly 

increasing. The Square Kilometer Array and other next 

generation observatories will usher in an era of exascale 

data and beyond [1]. This necessitates an equivalent 

increase in data transfers, processing speeds, and emphasis 

on real-time analysis. Reducing the performance gap 

between high-level science algorithm development 

(frequently in Python) and real-time, production code 

would allow astronomers to better utilize the hardware 

available to them. To enable this, we create a high-level 

array data processing pipeline framework in the Julia 

programming language, featuring templates for modular 

data processing algorithms. We demonstrate its 

performance with a spectral kurtosis algorithm and show 

that the new interface does not introduce significant 

processing overhead. In future work, we will explore the 

signal processing potential of new hardware accelerators 

present in modern GPUs. Such accelerators promise 

improved performance along with new programming 

challenges. 

 

1 Introduction 
 

Currently, most radio astronomy data is reduced at the 

facility of origin before being sent to an astronomer for 

final processing. This data reduction is necessary for the 

final data volumes to be manageable, but it can also 

eliminate potential signals present in the raw data. As data 

rates increase, more scientific analysis must thus be done 

in real-time at the observatory. Our research will ultimately 

grant astronomers with limited programming knowledge 

the ability to write and integrate custom scientific 

algorithms into raw radio facility data processing pipelines. 

 

 

1.1 Real-Time Data Processing 
 

Most processing at other radio observatories follows, at the 

highest levels, a somewhat similar design: digitize, 

channelize, reduce, and store. The increased usage of 

commodity digital hardware and necessity for distributed 

                                                 

1 http://seti.berkeley.edu 

computing will likely result in a trend in observatory 

pipelines to look more like the MeerKAT and SKA designs 

[2]. The Very Large Array is adding Ethernet multicast 

capabilities [3], and many other facilities are increasing the 

role of GPUs in their computing infrastructure [4]. 

 

At the MeerKAT array, our initial target deployment  

observatory,  the real-time data pipeline runs as follows: 

After coarse channelization, packets of complex antenna 

voltage data are streamed to distributed compute nodes 

over a network interface where they are reassembled into 

sequential blocks of data and topped with a small header of 

metadata. Next, the data is reduced in some preselected 

fashion, stored in an on-site data silo for temporary storage, 

then eventually disseminated for final storage or 

processing.  

 

Various low-level frameworks have been created to ease 

the creation of these data pipelines. HASHPIPE [5], 

PSRDADA [6], kotekan [7],  and Pelican [8] are all low-

level frameworks written in C or C++ for radio astronomy. 

As our work was initiated at the Berkeley SETI Research 

Center1 and aimed for initial use at the MeerKAT array, we 

chose to base development on HASHPIPE. 

 

HASHPIPE is an evolution of the GUPPI data acquisition 

pipeline, is written in C, and is used in various stages of 

deployment at the Green Bank Observatory, Parkes, 

MeerKAT, HERA, and the Allen Telescope Array [5]. It 

creates shared ring buffers, assembles network packets, 

manages processing threads’ access to data through 

semaphore arrays, and continually updates block metadata 

and a global status buffer. HASHPIPE is performant and 

allows for custom plugin creation, but its inherently low-

level nature makes it inaccessible to many astronomers 

who program primarily in Python. To allow for easier 

future development, extensibility, and astronomer use, a 

high-level framework is necessary.  

 

There has been at least one such manifestation of this idea 

in the past: Bifrost, which is a framework deployed at the 

Long Wavelength Array in New Mexico [9]. However, it 

relies on Python as the high-level interface. We currently 

find Julia a more preferred language for future work. 



 

1.2 Julia 
 

The Julia programming language was chosen for this 

project because it offers a high-level interface that is very 

similar to Python, a common language used by many 

astronomers, while also bringing performance that often 

rivals C. Julia is dynamically typed, just-in-time compiled, 

features multiple dispatch, and has powerful REPL and 

interactive web notebook environments [10]. Its primary 

benefit over Python is its speed. As a compiled language 

(using LLVM), Julia’s performance is often more 

comparable to C than Python. Julia also has capabilities to 

directly call or be called from Python and C code. This 

enables an easy transition for astronomers who do not have 

to forego premade astronomical Python libraries. 

 

Additionally, Julia has excellent high and low-level GPU 

interfaces. By efforts to include GPU support into the Julia 

compiler toolchain, GPU programming in Julia can be 

simple and performant [11].  Python does have similar 

acceleration libraries available like Numba or CuPy, but 

these are implemented in a fundamentally different way. 

Julia’s use of LLVM, which natively targets both CPUs 

and GPUs, requires much less device-specific code and 

enables a more wholistic compilation process. For more 

details, refer to Besard [11], which outlines many of the 

reasons we believe Julia has great potential in the future of 

radio astronomy data processing. 

 

 

2 High-Level Framework 
 

To create a starting point to assess the feasibility of our 

high-level framework, lightweight Julia wrapper functions 

and structs were written to provide the functionality of 

HASHPIPE. Current work is being done to integrate the 

Julia and C interfaces more seamlessly through cross-

compiled binaries. Beyond an identical set of functions, the 

Julia API enables additional improvements by leveraging 

the expressive and data-focused nature of the language. For 

example, HASHPIPE uses the legacy hget/hput library to 

update header records. By using multiple dispatch 

functionality, a set of header functions that depend on input 

object type can be coalesced into a single function. This 

functionality eliminates a potential source of error but is 

not possible in C/C++. 

  

To showcase this new Julia interface, we created and tested 

a demo HASHPIPE processing thread that interacts with a 

standard C-level HASHPIPE pipeline (Figure 1). This 

setup was meant to mimic what an astronomer might 

program as the final step in an existing real-time data 

processing pipeline at a telescope array. 

 

Data is sent to a processing node via UDP packets that are 

then reassembled into a common astronomy data format by 

a HASHPIPE C-thread. Then, when this thread signals a 

portion of data is ready, the waiting Julia HASHPIPE 

thread takes ownership of the data, asynchronously 

transfers it to the GPU, runs the astronomer-selected 

algorithm on the data, and transfers the results back to the 

CPU. This cycle starts over again when the Julia thread 

frees the original CPU data for the preprocessing thread to 

overwrite with new data. The HASHPIPE status buffer 

must be updated by all threads during the entire process. 

 

 

Figure 1. Flow diagram of a commensal MeerKAT data 

pipeline  

In total, the code necessary to create the custom processing 

thread that interacts with an existing C-level HASHPIPE 

pipeline is ~120 lines – much of which can be used as a 

template for any thread. Our benchmarks also showed this 

code was sufficiently performant. The Julia processing 

thread that does not compute or transfer any data (null 

thread) runs in less than 0.5 milliseconds per data block. 

Compared to an equivalent C-only thread, the Julia thread 

incurred a negligible compute time penalty on the order of 

10s of microseconds. By running our test thread setup, we 

validated the feasibility of a high-level data pipeline 

framework integrating with existing real-time HASHPIPE 

pipelines. Current development work involves creating an 

offline thread template for post-processing on personal 

computers to speed up astronomers’ day-to-day processing. 

This will reduce the barrier of entry into our codebase and 

serve a more common workflow. 

 

Next, we developed an algorithm template for our 

framework. The goal is to have a modular set of performant 

algorithms that can be chosen and chained together by an 

astronomer. Rather than each astronomer having their own 

custom algorithms, there can be a standard set of publicly 

available algorithms that can be selected from and 

extended as necessary. Further, by doing this in the Julia 

programming language, a high-level GPU interface 

resembling common CPU Python code is provided directly 

to astronomers and allows for higher performance code 

development. If further speed is needed, the Julia language 

and LLVM compiler chain allow for low-level tweaks. In 

the future, we also plan on adding automatic memory cost 

calculations to determine if and how many simultaneous 

sets of the calculation pipelines can be run on the given 

hardware. This is especially beneficial for offline 

processing and can mitigate data transfer dead time – 

enabling better hardware utilization. With low arithmetic 

intensity operations, data transfers become the 

performance bottleneck.   

 

To showcase this library, we created an example algorithm 

using spectral kurtosis (SK) - a signal discriminator based 

on the gaussianity of radio signals [12]. Naïve CPU and 

GPU SK implementations were written to showcase Julia’s 



expressibility. The only difference between the two 

functions was a single conversion to interpret the data array 

as either a normal array or a CUDA array. We then 

integrated these algorithms into the new Julia test pipeline 

and benchmarked their performance. Our test system 

included dual-socket Intel Xeon Silver 4110s, 96 gigabytes 

of RAM, and an NVIDIA 1080Ti GPU. The data we 

calculated spectral kurtosis on was very similar to the 

output data of the MeerKAT telescope array and was 

processed in 128 megabyte blocks of complex, 8-bit 

voltage samples across 2 polarizations, 32,768 samples, 16 

coarse channels, and 64 antennas. Both spectral kurtosis 

algorithms calculated SK over the entire time window 

(largest integration length possible).  

 

Table 1. Performance comparison of Julia spectral 

kurtosis implementations on 128 MB data blocks 

Implementation 

Type 

Time per Block 

(ms) 

Throughput 

(GBs-1) 

CPU 400 0.313 

GPU 21 5.95 

 

Table 1 shows the performance results of this experiment. 

By editing a single line of code and utilizing a functionality 

of Julia’s GPU interface, we showed a 19x performance 

increase. This experiment highlights the possibilities Julia 

offers as a high-level language. An astronomer can greatly 

accelerate parallelizable algorithms easily. Although 

similar processes may be applied in Python, future work 

discussed in the next section will show the low-level 

integration capabilities other languages do not offer.  

 

3 Tensor Cores for Signal Processing  
 

With a high-level GPU API available to astronomers, work 

must be done to ensure efficient utilization of new 

generations of hardware. Specifically, future work will 

involve developing high-level astronomical algorithms in 

Julia that use tensor cores. This will further increase 

potential performance gains of our framework. With closer 

integration into the compilation sequence and native 

targeting of hardware accelerators, Julia is preferred over 

Python for this work [11]. 

 

Tensor cores are hardware accelerators in NVIDIA GPUs 

that execute fused matrix multiply-add calculations in a 

single clock cycle. They can greatly accelerate matrix-

heavy algorithms and are especially beneficial for low 

precision data. On NVIDIA’s A100 GPU, using tensor 

cores increases computing throughput on full precision 

floating point data by a factor of 8. For 8-bit data, the 

throughput increase is 32x [13]. Sub-byte data types offer 

further improvements but are still under active 

development. 

 

Although intended for machine learning, tensor cores have 

potential to accelerate many signal processing algorithms. 

Radio astronomy’s low precision (8-bit or lower) lends 

itself well to tensor core use while common array 

algorithms like correlation rely heavily on matrix 

multiplication/addition. Previous work has shown 100x 

increases in correlation throughput when compared to 

default CUDA floating point arithmetic [14]. 

 

However, because of their machine learning origin, digital 

signal processing algorithms have been relatively slow to 

adopt tensor core use. Support for optimized low-precision, 

complex number operations are slower to be added than 

common machine learning tasks. Julia 1.5 only supports 

half-precision base tensor core instructions, and CUBLAS 

and CUDA gemm support for integer tensor core 

processing is currently not fully developed. We aim to 

include 8-bit tensor core functionality in Julia and from 

there, build out high-level signal processing algorithms.  

 

4 Conclusion 
 

The future of radio astronomy signal processing holds 

many foreseeable trends like larger data volumes, more 

array-based observations, and increasing reliance on digital 

hardware for processing. Combined with external trends of 

cheaper commodity compute, the proliferation of hardware 

accelerators, and improved compiler toolchains, the 

necessity and usability of a high-level data pipeline 

framework becomes apparent. We present a data pipeline 

framework in Julia that preserves the performance of the 

underlying low-level code while providing an accessible 

high-level interface to enable astronomer access to on-site, 

real-time processing. This could prove especially useful to 

transient searches (FRBs or SETI), all-sky surveys, and any 

commensal array observation. 
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