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Abstract

The advent of SETI detection processing on interferomet-
ric telescopes presents challenges for signal processing.
Beamforming the outputs of many dishes or aperture ar-
rays is particularly difficult, requiring a very large number
of beams to fill the primary field of view (FOV). Mean-
while the array gain is limited because of array sparseness.
Incoherent beamforming (IBF) is the conventional alterna-
tive. IBF covers the primary FOV at a relatively low com-
putational cost but has limited sensitivity. In this paper, an
alternative to beamforming based on the observed covari-
ance matrix is proposed. A method called Covariance Off-
Diagonal Sum (CODS) computes the root-mean-square of
the covariance matrix elements above the main diagonal,
and is found to offer 3 dB (2x) improved sensitivity over
IBF while still covering the primary FOV. The computa-
tional cost is approximately NAP/2 times that of IBF, where
NAP is the number of apertures (dishes or aperture array
stations), but could be orders of magnitude below beam-
forming over the full FOV. An Eigenvalue detector is also
considered. We hypothesize that CODS will be less sen-
sitive to RFI compared to IBF. The utility of CODS is not
limited to narrowband signals in SETI, but could be useful
for rapid detection of pulsars and fast radio bursts as well.

1 Introduction

Up to now, Radio SETI (Search for Extraterrestrial Intelli-
gence) has been largely performed on single-dish radio tele-
scopes. In the near future, multi-dish interferometric radio
telescopes will be used for SETI. This will greatly improve
sensitivity, but at the same time will increase computation
and require new signal processing architectures. Combin-
ing signals from all the sensors can be particularly challeng-
ing. Because of large baselines, conventional beamform-
ing produces very narrow beams, and may potentially re-
quire thousands of them to cover the primary field of view.
For full FOV coverage, the number of beams is given by
Nbeam = (Darray/Ddish)

2. As an example, the MeerKAT ra-
dio telescope in South Africa has 64 dishes of 13.5 meter
diameter. Using all dishes with an 8 km array diameter,
(8000/13.5)2 ≈ 350,000 beams are required! Even just us-
ing the array core, the numbers are large: for 44 dishes,
(1300/13.5)2 ≈ 9300 beams are required, while 33 dishes
requires 3000 beams [1]. With a potentially prohibitive
number of beams, alternative approaches need to be consid-

ered, as discussed in [2]. In this paper, we examine a novel
detector based on sums of covariance matrix elements. The
detection performance and required computation of this are
evaluated and compared to other approaches.

2 System Architecture

Figure 1. SETI Architecture

A notional system architecture is shown in Figure 1. We
assume that frequency decomposition is done first, through
use of multiple stages of polyphase filter banks (PFBs),
down to the ultimate frequency resolution, on the order of a
few Hz. The complex filter bank outputs are retained. Fol-
lowing this, detection is performed through beamforming
and non-coherent averaging, or another technique. For each
detection, the optimal steer weights are derived and the di-
rection of arrival is estimated. A target beam is computed
over a suitable bandwidth and spectrogram and power spec-
tral density estimates are computed. Complex time-domain
samples are collected over a limited bandwidth and dura-
tion to allow later analysis.

3 Signal Model

We assume that within a frequency bin, the signal is ap-
proximately zero frequency, and can be represented as a
complex DC constant A and a phase factor e jΦi . Φi de-
pends on the arrival direction and aperture offset from the
array origin (phase center): Φi = ~k∗ ·~xi = −(2π/λ )~u∗ ·~xi
where ~u∗ is the arrival unit vector pointing away from the
earth. The noise consists of independent complex Gaussian
variates whose real and imaginary parts are independent.
We assume the signal has a random polarization common
to all elements. The x and y polarization outputs are:



rx−i(t) = Ae jΦicos(θpol)+nx−i(t) (1)

ry−i(t) = Ae jΦisin(θpol)+ny−i(t)

for i = 1..NAP. In subsequent discussion, we use the terms
“element”, “aperture”, and "dish" interchangeably, recog-
nizing that an aperture array station might be used rather
than a dish.

4 Detection Approaches

Four detection approaches were defined for evaluation, as
described below. Detection is done on a bin-by-bin basis,
with detectors running in parallel over all frequency bins.
We assume all dish data are delay- and phase-aligned to the
primary beam boresight direction so that subsequent "tied
array" beams can be formed using simple complex weights
for phase alignment.

The detection problem consists of choosing two hypothe-
ses H0 and H1. Under H1, a signal is present with noise,
while under H0, we are receiving noise alone. A detec-
tion statistic is computed at the end of an averaging inter-
val Tavg = Navg/∆BW , where ∆BW is the filterbank band-
width, and compared to an appropriate threshold to decide
between H0 and H1. The separation of the H0 and H1
statistics as a function of signal-to-noise ratio (SNR) at the
element level determines the minimum detectable SNR for
an allowable false alarm rate, and is a measure of sensitiv-
ity.

4.1 Beamform (BF)

This is a conventional beamformer, a coherent weighted
sum over all elements, repeated for 2 polarizations and
all pointing directions required to cover the primary FOV.
Let φ k

i be the steering phase for element i and beam k,
which points in direction ~uk: φ k

i = −(2π/λ )~uk ·~xi. With
wk

i = e− jφ k
i (ignoring array shading), the beams are

bx−k(t) = (1/NAP)
NAP−1

∑
i=0

wk
i rx−i(t) (2)

by−k(t) = (1/NAP)
NAP−1

∑
i=0

wk
i ry−i(t)

Using an energy detector, the detection statistic for beam k
is the mean of the magnitude square of each beam sample
over the averaging interval and 2 polarizations:

DetBFk = (1/Navg)
Navg−1

∑
t=0
|bx−k(t)|2 + |by−k(t)|2 (3)

for k = 1..Nbeam. The computation is simple, but repeats
over a large number of beams. The total computation
for each frequency bin (expressed as complex multiply-
additions) scales as CompBF = 2(NAP +1)NavgNbeam.

4.2 Incoherent Beamform (IBF)

The incoherent beam is a sum of the squared magnitude
of each element sample in both polarizations. As IBF(t)
is already an energy quantity, the detection statistic is the
mean over all time samples in the averaging interval.

IBF(t) = (1/NAP)
NAP−1

∑
i=0
|rx−i(t)|2 + |ry−i(t)|2 (4)

DetIBF = (1/Navg)
Navg−1

∑
t=0

IBF(t)

Note that only one incoherent beam is required to cover
the primary FOV, and the computation is least demanding,
but this will be the least sensitive of all approaches. The
compuation is given as CompIBF = 2NAPNavg.

4.3 Covariance Off-Diagonal Sum (CODS)

This is based on the sample covariance matrix, which is
the average of the outer product of the element data vectors
over all time samples. A single matrix is computed from
the outer products of both polarizations. The ij element of
the covariance matrix R is:

Ri j = (1/Navg)
Navg−1

∑
t=0

rx−i(t)r∗x− j(t)+ ry−i(t)r∗y− j(t) (5)

Note that the DetIBF is the mean of the main diagonal of the
covariance matrix. In contrast, the CODS detection statistic
is the root-mean-square (RMS) sum of all elements above
the main diagonal:

DetCODS =

√√√√ 2
NAP(NAP−1)

NAP−1

∑
i=0

NAP−1

∑
j=i+1

|Ri j|2 (6)

When implemented, the square root operation may be omit-
ted. The main diagonal is excluded to avoid including prod-
ucts with correlated noise samples, which should improve
the DetCODS statistical properties. A total of NAP(NAP−
1)/2 entries of R are summed. With 2 polarizations, the
computation is CompCODS = NAP(NAP− 1)(Navg + 1/2).
Like the incoherent beam, only one sum is required to cover
the primary FOV. We expect CODS to have sensitivity and
computation in-between BF and IBF. A variant called Co-
variance Full Sum (CFS) is also defined for comparison,
which performs an RMS sum of all elements in R.

4.4 Maximum Eigenvalue Detector

A detector from [3] based on the maximum eigenvalue
λMAX of R is also included for comparison:

DetEig1 = λMAX/(Tr(R)−λMAX ) (7)

Under H0, with independent unit-variance noise, the eigen-
values will each tend to unity. Under H1, the maximum
eigenvalue will tend to 1 + Psig, so DetEig1 will tend to
(1+Psig)/(NAP−1) ∝ (1+SNR). Two variants are consid-
ered: EIG1 computes all eigenvalues with O(NAP

3) compu-
tation, and EIG2, which uses the power method at O(NAP

2)
computation, with CompEig2≈ 3CompCODS.



5 Covariance-Based Detector Rationale
The rationale behind CODS and CFS is as follows. The
value of the ij covariance matrix entry is:

Ri j = (1/Navg)
Navg−1

∑
t=0

[ rx−i(t)r∗x− j(t)+ ry−i(t)r∗y− j(t) ]

= (1/Navg)
Navg−1

∑
t=0

[ |A|2e j∆Φi j +nx−i(t)n∗x− j(t)

+ny−i(t)n∗y− j(t)+ cross terms ] (8)

The cross terms should average toward zero. The sig-
nal magnitude appears in each entry with a phase factor
∆Φi j = Φi−Φ j, which should be consistent over the aver-
aging interval. The noise terms in Ri j are products of Gaus-
sian variates, which are approximately Gaussian if i 6=j (off-
diagonal) and chi-square if i=j. All noise terms of Ri j will
reduce with averaging, but the off-diagonal noise terms will
be zero mean. Once averaging Ri j is complete, and if A is
large enough, the magnitude square operation in CODS or
CFS should effectively remove the effect of the phase factor
∆Φi j, so |Ri j| will consist of the signal magnitude squared
|A|2 plus a noise component. Beam steering or phase cali-
bration is not required. CFS includes diagonal components
i=j with non-zero-mean noise, while CODS does not.

Figure 2. Detection Curves for Various Algorithms for
NAP = 64 and Navg = 100

6 Simulation Description and Results
A simulation was conducted to examine the relative perfor-
mance of the above detectors for various array sizes NAP
and averaging lengths Navg. For a large number of trials,
the phases Φi and weights wi = e−Φi were created and the
amplitude A was swept over a wide range of element SNRs
(for H1), or A was set to 0 (for H0). For simplicity, we did
not model all possible arrival directions within the FOV but
instead assumed that the element phases for each trial are
random and uniformly distributed over [0,2π). We believe
this should be a reasonable assumption over large baselines
with a wide range of frequencies and arrival directions, but
this can be verified with a higher-fidelity analysis and sim-
ulation. In order to avoid a potentially difficult analysis of

specific H0 distributions, a detection threshold was set at
γ = µ0 +Nstdσ0, where µ0 and σ0 were the observed H0
means and standard deviations, and Nstd was set at Nstd = 6,
corresponding ideally to PFA = 10−9 for normal variables.
This is a conservative choice. We don’t expect the results
for other thresholds to be markedly different.

A set of detection curves was created by evaluating his-
tograms at various input SNRs and estimating the proba-
bility of detection Pd as a function of element SNR. An
example for the various algorithms is shown in Figure 2 for
for NAP = 64 and Navg = 100. Typical S-shaped curves are
seen when plotting Pd vs SNR. The relative performance of
the detectors can be assessed by examining the SNR offsets
between the curves. We define the array gain AGdB for a
given Navg as the difference in dB between the single ele-
ment curve and the curve for each algorithm at Pd=50%.

Figure 3. Relative Performance BF, IBF, EIG1 and CODS
Algorithms vs. Number of Apertures NAP

Figure 4. Relative Performance BF, IBF, EIG1 and CODS
Algorithms vs. Number of Averages Navg

With the reference Pd chosen, we can assess the relative
merits of the detectors. We chose several array sizes cor-
responding to representative systems: NAP=[12, 27, 36,



42, 64, 84, 197] corresponding to APERTIF, Jansky VLA,
ASKAP, ATA-42, MeerKAT, MeerKAT Extension, and
SKA1-Mid, respectively. The measured array gains are
plotted for BF, CODS, EIG1 and IBF versus the number
of apertures (Figure 3) and versus the number of averages
(Figure 4). The BF case assumes 100% of elements are
used, but Figure 3 also includes theoretical curves for BF
using subarrays with 50% and 33% elements (dashed lines).
Table 1 tabulates the array gain relative to IBF versus NAP.

NAP
12 27 36 42 64 84 197

BF 100% 5.4 7.3 7.8 8.0 9.0 9.7 11.3
BF 50% 2.4 4.1 4.8 5.1 5.9 6.8 8.4
BF 33% 0.6 2.3 3.0 3.2 4.1 5.0 6.6

Eig1 3.3 4.3 4.5 4.5 4.8 5.1 5.5
CODS 3.2 3.3 3.4 3.3 3.2 3.2 3.1

IBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1Elem -5.4 -7.2 -7.8 -8.2 -9.1 -9.5 -11.6

Table 1. Estimated Array Gain over IBF (dB), Navg=100
vs. Number of Apertures NAP

7 Discussion
Some notes and observations:

• BF and IBF trend almost exactly to the classical
expressions AGdB=10log(NAP) and 5log(NAP) respec-
tively. BF is the most sensitive and IBF the least.

• CODS offers 3.2 dB better performance than IBF, with
AGdB = 5log(NAP) + 3.2, but is 2-8 dB worse than full
BF, depending on array size.

• EIG1 has AGdB ≈ 6.4log(NAP) + 2.3, 0-2 dB above
CODS. CODS is comparable to EIG1 for NAP=12.
EIG1 is still 2-6 dB less sensitive than BF.

• The power method EIG2 algorithm is within .15 dB of
EIG1 for Navg≥ 64, at∼3x the computation of CODS.

• The relative performance between the various detec-
tors is insensitive to the number of averages Navg, ex-
cept EIG1 which increases slightly with Navg.

• Taking into account lower AG due to fewer elements
in the array core and scalloping and calibration losses,
CODS and EIG1 may be competitive with BF in
practice. The BF 33% line may actually be what is
achieved with 50% core elements.

• Given that detection rate scales as AG3/2 [2], we would
expect relative rates of 1.0 (IBF), 3.1 (CODS), 5.2
(EIG1) and 22 (100% BF over full FOV) for Navg=100
and NAP=64, but huge differences in compute costs.

In the simulations, the Covariance Full Sum (CFS) vari-
ant of CODS consistently has 1 dB less gain than CODS,
a result of correlated noise in the diagonal elements of R.
CFS is clearly inferior. A CODS variant called “Covariance

Off-Diagonal Absolute Sum” (CODAS) was also exam-
ined, which calculates mean(|Ri j|) rather than RMS(|Ri j|)
for off-diagonal elements. CODAS has nearly identical per-
formance (within .1-.4 dB), so this could be used in place
of CODS.

One significant benefit of CODS and EIG1/EIG2 over IBF
may be in radio-frequency interference (RFI) rejection. In-
terferometric arrays are potentially less sensitive to RFI be-
cause of the path diversity from RFI sources to individ-
ual apertures. This will partly decorrelate the RFI cross-
products (visibilities). Therefore one may expect CODS
and EIG1/EIG2 to be less susceptible to RFI than IBF.
When RFI forces a detection, the covariance matrix is avail-
able to allow separation of the interferer from the desired
signal and noise. Once isolated, it may be possible to rec-
ognize the interference and reject it. Features to recognize
RFI might include coherence across the array (or lack of it),
direction of arrival, low elevation angle, angular motion, or
cyclostationary properties.

One caveat about the covariance methods: R must be co-
herently summed over the full observation interval for both
EIG1 and CODS to attain the gains reported above. If Det-
CODS or DetEIG1 from subintervals are combined to form
a longer interval, the net gain over IBF decreases to only∼1
dB. If searching for chirp signals spanning many frequency
bins over Tavg, we need to combine R, not DetCODS or
DetEIG1, over the appropriate bins and subintervals.

8 Conclusions and Further Steps
A novel detector was described and evaluated for pefor-
mance against other candidate algorithms. The CODS de-
tector should offer 3 dB more sensitivity over incoherent
beamforming at a considerable cost reduction compared to
Eigenvalue detectors or full beamforming. The utility of
CODS is not limited to narrowband signals, but could be
used for rapid detection of pulsars and fast radio bursts.
Clearly the next steps involve developing higher-fidelity
simulations, and examining real data sets.
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