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Abstract

Accurate placement of elements in large antenna arrays is
a difficult and costly process. We explore the use of the
validated exponential analysis (VEXPA) technique that was
previously formulated to solve a direction-of-arrival (DOA)
estimation problem, to find the antenna element positions in
an array after the installation phase, so that cost-savings can
be realised during placement of the antenna elements. Mea-
surements are taken from harmonically related input signals
transmitted from an Unmanned Aerial Vehicle (UAV) for
which the position in the sky is known. It is shown how the
UAV’s zenith angle can be manipulated to generate param-
eters required for VEXPA’s de-aliasing step. A simple sim-
ulation illustrates the functioning of the proposed method.

1 Introduction

Accurate beamforming of an array of antennas requires ac-
curate knowledge of the positions of the individual anten-
nas. Establishing those antenna positions can be an elabo-
rate process for large-N radio interferometers like the Low
Frequency Array (LOFAR) [1] and the Square Kilometre
Array (SKA) [2]. In [3], a method was proposed to measure
the positions of the individual antennas using an Unmanned
Aerial Vehicle (UAV). As this is done after installation, it
facilitates a more cost-effective roll-out of the antennas by
being tolerant to antenna placement errors and errors when
connecting the antennas to the back-end. In this contribu-
tion, we recognise that these UAV measurements can actu-
ally be considered as an inverse-DOA estimation problem
and explore the possibility to use the exponential analysis
method developed for DOA estimation in [4] for antenna
position estimation.

2 Problem Formulation

Figure 1 illustrates the odd harmonic signals Si(t) transmit-
ted from the UAV located at zenith and azimuth angles, θ

and φ , respectively. The index i ∈ N is a range of nat-
ural numbers that is used to distinguish between narrow-

band signals at different odd harmonic frequencies ωi =
2(i+ 1

2 )ω0, with ω0 the base frequency. At a time t the

Figure 1. Illustration of signals Si(t) transmitted from the
UAV towards a planar array.

signals are expressed as

Si(t) = si(t)exp( jωit) (1)

where si(t) = ai(t)exp( jpi(t)) and the slowly varying
amplitude and phase of the signal are denoted by ai(t) and
pi(t), respectively. It is assumed that this signal is strong
enough so that astronomical sources in the field of view of
the array can be ignored, as in [3]. For large arrays, the
source is in the radiating near-field of the antenna, thus
a curved phase front is incident on the array. A possible
solution for this is to estimate the positions of elements
in the array incrementally using a subset of antennas to
ensure the far-field condition. For purposes of illustration,
the far-field condition is assumed, such that Si(t) is a plane
wave incident on the array.

The first element is chosen to coincide with the ori-
gin, i.e., δ1 = (0,0). The time delay of incidence on the
mth antenna element at a position δm = (δmx,δmy) on the



x− y grid relative to δ1 is given by

τm =
r̂m · r̂UAV

c

=
δmx sinθ cosφ +δmy sinθ sinφ

c
,

(2)

where r̂m = δmxx̂+ δmyŷ+ (0)ẑ is the position of the mth
antenna element in the (x,y)-plane, r̂UAV = sinθ cosφ x̂+
sinθ sinφ ŷ+cosθ ẑ is the unit vector from the origin to the
UAV’s position (θ ,φ) and c is equal to the propagation ve-
locity of the signal, or in free space, the speed of light. The
narrowband assumption that the signal does not change no-
ticeably as it moves across the elements of the array gives
an output at the mth antenna element at time t for frequency
i as

fmi(t) = Si(t + τm)

≈ si(t)exp( jωit)exp( jωiτm)

= Si(t)exp
(

j
ωi

c
r̂m · r̂UAV

)
.

(3)

2.1 Element Data Model

To extract the two-dimensional element positions
(δmx,δmy), we require signals from two linearly inde-
pendent directions in a plane parallel to the (x,y)-plane
[5]. Let the first direction ∆1 = cosφ1x̂+ sinφ1ŷ and the
second direction ∆2 = cosφ2x̂ + sinφ2ŷ. The common
factor sinθ is intentionally excluded in these definitions, as
it is used in the following section to model the sub-sampled
exponential analysis problem. Then at a fixed time t, we
use the following shorthand notations:

fmi = fmi(t),

αi = si(t),

βi = Si(t) = αi exp( jωit),

Ψm1 = j
ω0

c
sinθ(δmx cosφ1 +δmy sinφ1),

Ψm2 = j
ω0

c
sinθ(δmx cosφ2 +δmy sinφ2).

(4)

We distinguish between the coefficients αi1 and αi2 for the
different flight paths of the UAV along ∆1 and ∆2. Then
βi1 = αi1 exp( jωit) and βi2 = αi2 exp( jωit). The samples
collected at each element m are filtered into sub-bands, thus
for the two different directions we have

fmi1 = βi1 exp
(
2
(
i+ 1

2

)
Ψm1

)
,

fmi2 = βi2 exp
(
2
(
i+ 1

2

)
Ψm2

)
.

(5)

The coefficients βi depend on the different frequencies ωi.
This is undesirable, so a pre-processing step is to mix
all signals down to DC through digital multiplication of
exp(− jωit ′) at each corresponding sub-band, where t ′ in-
dicates a time different to t. A constant phase compo-
nent remains in each case, denoted as exp( jωi∆T 1) and
exp( jωi∆T 2), where ∆T 1 and ∆T 2 refer to the time differ-
ence t − t ′ corresponding to each case. This is dealt with

by realising that the reference antenna element’s position
δ1 = (0,0) and at time t = 0:

f1i(0) = si(0)exp( jωi∆T )exp(0) (6)

which is some constant for both directions ∆1 and ∆2 that
can be normalised to 1. We can therefore remove the vary-
ing phase offsets by dividing all mixed down sample sets
that are collected at different time intervals with the mixed
down value of the first sample in time for the first antenna
element f1i. The samples in both directions then become:

f ′mi1 =
αi1 exp( jωi∆T 1)exp

(
2
(
i+ 1

2

)
Ψm1

)
f1i1(0)

= exp
(
2
(
i+ 1

2

)
Ψm1

)
,

f ′mi2 =
αi2 exp( jωi∆T 2)exp

(
2
(
i+ 1

2

)
Ψm2

)
f1i2(0)

= exp
(
2
(
i+ 1

2

)
Ψm2

)
.

(7)

It is interesting to note that these phases are equal to the
phases of the correlations measured on the equivalent base-
lines between element m and the element at the origin.

2.2 Sub-Sampled Exponential Analysis

Let λ0 denote the wavelength corresponding to the base fre-
quency ω0. Then, if the spatial Nyquist criteria

∣∣sinθ(δmx cosφ1 +δmy sinφ1)
∣∣< λ0

2
(8a)∣∣sinθ(δmx cosφ2 +δmy sinφ2)

∣∣< λ0

2
, (8b)

are not met for all antenna element positions δm, we are
dealing with a sub-sampled exponential analysis problem
that can be solved by using the VEXPA technique described
in [6]. VEXPA’s de-aliasing method makes use of co-
prime scale and shift parameters σ and ρ , respectively. The
UAV’s zenith angle θ can be exploited to model these pa-
rameters. First define a virtual wavelength

λv > λ0 (9)

large enough to ensure that the spatial Nyquist criteria

∣∣δmx cosφ1 +δmy sinφ1
∣∣< λv

2
(10a)∣∣δmx cosφ2 +δmy sinφ2

∣∣< λv

2
(10b)

are met for all m antenna element positions. Then, define

Φm1 = j
ωv

c
(δmx cosφ1 +δmy sinφ1)

Φm2 = j
ωv

c
(δmx cosφ2 +δmy sinφ2),

(11)

where the virtual frequency ωv =
2πc
λv

.



We need to collect the following samples at each an-
tenna element m:

f ′m(iσ)1 = exp
(
σ
(
i+ 1

2

)
Φm1

)
(12a)

f ′m(iσ+ρ)1 = exp
((

σ
(
i+ 1

2

)
+ρ
)

Φm1
)

(12b)

f ′m(iσ)2 = exp
(
σ
(
i+ 1

2

)
Φm2

)
(12c)

f ′m(iσ+ρ)2 = exp
((

σ
(
i+ 1

2

)
+ρ
)

Φm2
)
. (12d)

To do this, let θσ denote the zenith angle of the UAV during
collection of the samples in (12a) and (12c). From compar-
ison with (7) we have

σ
(
i+ 1

2

)
ωv = 2

(
i+ 1

2

)
ω0 sinθσ , (13)

so that
sinθσ =

σωv

2ω0
. (14)

The left hand side of (13) is the desired model and the right
hand side is the description of what is physically going on.
The angle θσ is calculated from the scale parameter σ ∈Q.
It is not a requirement for σ (or θσ ) to have the same value
in both directions ∆1 and ∆2, but this is done to simplify the
analysis. The UAV’s zenith angles θρi during collection of
the samples in (12b) and (12d) are calculated from the shift
parameter ρ ∈Q and once again comparing with (7):(

σ
(
i+ 1

2

)
+ρ
)

ωv = 2
(
i+ 1

2

)
ω0 sinθρi , (15)

such that

sinθρi =

(
σ
(
i+ 1

2

)
+ρ
)

ωv

2
(
i+ 1

2

)
ω0

. (16)

The values of σ ,ρ ∈ Q must be chosen as coprime and
lead to sensible values for the angles θσ ,θρi . Notice that
the UAV’s flight path should include 2(n + 1) positions
leading to signal DOAs of (φ1,θσ ),(φ1,θρi),(φ2,θσ ), and
(φ2,θρi), where n is the number of frequency harmonics
transmitted.

From the samples in (12) we can solve each antenna
element’s position δm relative to δ1. We collect Nt time
samples, also known as snapshots, at different time
intervals for each base term in (12). We then calculate
Nt scaled base terms exp(σΦm1) and exp(σΦm2) with
the Root-MUSIC algorithm [7], which requires a time
average of the samples at each antenna for the different
frequencies in order to approximate the covariance matrix.
For this purpose, we use a subset of Ns < Nt randomly
chosen sub-snapshots for each of the Nt evaluations of
Root-MUSIC.

Note from (12) that the base terms exp(ρΦm1) and
exp(ρΦm2) are the coefficients of the shifted samples.
These are solved in the least squares sense for each antenna
element at each snapshot separately in both directions from
the respective Vandermonde systems

1
exp(σΦm)

...
exp((n−1)σΦm)

exp(ρΦm) =

 f ′m(σ+ρ)
...

f ′m((n−1)σ+ρ)

 , (17)

with n the number of frequency harmonics, ωi.

As a result of noise, the Nt evaluations of exp(σΦm1),
exp(ρΦm1), exp(σΦm2) and exp(ρΦm2) are clustered
around the true solution in the complex plane. To locate
our best estimate of these base terms, we do a search for the
densest point among the possible Nt points. The densest
point has a specified minimum number of points around it
within the smallest possible radius.

We then have two sets of possible solutions for each
direction:{

exp
(

Φm1 +
j2π

σ
l
)

: l = 0, . . . ,σ −1
}
,{

exp
(

Φm1 +
j2π

ρ
l
)

: l = 0, . . . ,ρ−1
} (18)

and {
exp
(

Φm2 +
j2π

σ
l
)

: l = 0, . . . ,σ −1
}
,{

exp
(

Φm2 +
j2π

ρ
l
)

: l = 0, . . . ,ρ−1
}
.

(19)

Since σ and ρ are chosen to be coprime, the intersection of
the sets in (18) contains only one root which is the unique
solution exp(Φm1), and similarly, the intersection of the
sets in (19) gives the unique solution for exp(Φm2) [8].
Thus the aliasing problem is solved.

Since the vectors ∆1 and ∆2 are linearly independent,
the 2×2 regular linear system

j
ωv

c

[
cosφ1 sinφ1
cosφ2 sinφ2

][
δmx
δmy

]
=

[
Φm1
Φm2

]
(20)

is solved for each antenna element to get its position
(δmx,δmy). The above procedure is repeated for every an-
tenna element to find all positions δm.

3 Simulation Results

A simulation was done using parameters from a UAV flight
over a LOFAR low-band antenna (LBA) outer sub-station
consisting of 48 dipole antennas. A cross-scan flight is
performed within a 100× 100 m square at an altitude of
approximately 100 m. From the cross-scan we can use
φ1 = 45◦ and φ2 = 135◦ which leads to orthogonal direc-
tions ∆1 and ∆2 when viewing the flight path from above.
Figure 2 illustrates the layout of the sub-station.

The UAV transmits the 5th, 7th, 9th, and 11th harmonics
of a base frequency f0 = 6.3585 MHz, thus i = [2,3,4,5].
The largest absolute distances from the origin |δmx| and∣∣δmy

∣∣ of all elements in the sub-station is about 60 m.
The wavelength at the base frequency is λ0 = 47.1483
m, therefore the conditions in (8) are not met. To allow
for recovery from aliasing, let ωv = ω0/4 and σ = 5, to
meet the conditions in (10). This gives us θσ = 38.7◦. Let



Figure 2. Antenna elements in an LBA outer sub-station.

ρ = 7 so that θρi = [77.2◦,61◦,55◦,51.6◦] at the different
frequency harmonics ωi.

The effect of noise on the system was evaluated from
100 Monte Carlo runs for each noise level from 15 – 50 dB
in steps of 5 dB. The amount of snapshots Nt = 80 and the
sub-snapshots used to evaluate Root-MUSIC is Ns = 0.5Nt .
The RMS errors calculated for the x− and y−positions of
the antenna elements are shown in Figure 3.

Figure 3. Root mean square errors of element positions in
a LOFAR LBA outer sub-station for different noise levels.
Nt = 80, Ns = 0.5Nt .

At an SNR of 15 dB, the RMS error is close to 30 cm for
both x− and y−positions. This quickly drops down to er-
rors around 5 cm at 30 dB. The results of Figure 3 prove
that the proposed method works in the case of a controlled
simulation. Further experiments are being done to under-
stand the influence that various practical effects can have
on the results.

4 Conclusion

In this paper, it is shown how the validated exponential
analysis technique, VEXPA, can be used to estimate the po-
sitions of elements in an antenna array using harmonically
related input signals transmitted from a UAV. The UAV’s
position in the sky is exploited to create a model that allows

recovery from aliasing. The effectiveness of the method has
been illustrated by evaluation of the results for varied noise
levels. The next step is to prove that the method works
when using practical data from the field. Work in this re-
gard is currently ongoing.
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