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Abstract

The recently proposed self-holography method has the po-
tential to reduce the computational resources needed for
calibration of individual receive paths in large arrays like
LOFAR and SKA significantly. The method relies on form-
ing different beams from which the receive path gains can
be reconstructed. Self-holography has been applied suc-
cessfully with different beamforming schemes. In this
contribution, I present a generalised formulation of self-
holography capturing any beamforming scheme and use
that to assess its robustness to interfering sources. This
analysis indicates that the relative gain bias is inversely pro-
portional to the signal-to-interference ratio (SIR) regardless
of the beamforming scheme used. This result is corrob-
orated in simulations. However, the chosen beamforming
scheme has significant impact on the condition number of
the measurement matrix and, hence, on the susceptibility to
measurement noise. A beamforming scheme with (nearly)
orthogonal beamformer weight vectors is thus to be pre-
ferred.

1 Introduction

Calibration of radio astronomical arrays usually involves
measuring the visibilities, i.e., the array covariance ma-
trix. For this, the number of measurements scales quadrat-
ically with the number of elements in the array. This can
be computationally impractical for large arrays. A tech-
nique dubbed self-holography was proposed to remedy this
[1]. This technique assumes that the output of a refer-
ence beam pointed at a strong calibration source is cor-
related with the signals from the individual receiving ele-
ments in the array, making the number of measurements
scale linearly with the number of receiving elements. It
is assumed that the reference beam provides sufficient iso-
lation of the signal from the calibration source to ignore
the presence of other sources. The impact of the signal-to-
interference ratio (SIR) on the quality of the calibration so-
lutions was studied in depth in [2] leading to the conclusion
that self-holography can provide gain estimates of sufficient
quality for a number of practical scenarios, including (ini-
tial) calibration of the stations of the Low Frequency Array
(LOFAR) [3]. This conclusion was further corroborated by
an experiment to calibrate a prototype station for the low-

frequency aperture array system of the Square Kilometre
Array (SKA) [4] using self-holography on the Sun [5]. In
this experiment, however, the output of the reference beam
was correlated with the output of beams pointed towards a
grid of points on the sky instead of the output of individual
elements. This poses the question whether this improves
the robustness of self-holography to interfering sources.

In this contribution, I present results from a first exploration
of this problem. Noting that the signal from individual ele-
ments can be obtained by beamforming the array such that
all beamformer weights are set to zero except for one par-
ticular element, I start by generalising the self-holography
measurement equation, or data model, to describe a mea-
surement in which the output of the reference beam is cor-
related with the output signals from multiple beams. I then
use this data model to derive an expression for the impact
of the SIR on the gain estimation bias in generalised self-
holography in Sec. 3 analogous to the derivation in [2]. This
expression is corroborated by the simulations presented in
Sec. 4 before summarising the conclusions.

2 Data model

The array consisting of P receiving elements is assumed
to receive Q narrowband sources. The signal from the qth
source is modelled by a time series sq(t). The signal from
all sources can thus be stacked in a Q×1 vector s(t). As the
signals are assumed to be narrowband, the arrival time dif-
ferences between the receiving elements can be modelled
by phasors. Also, each receiving element may have a dif-
ferent gain towards each source. The multiplication of these
two factors results in a complex valued gain factor per re-
ceiving element per source apq, which can be collected in
a P×Q matrix A. The gains of the analog receive paths
between the antenna output ports and the analog-to-digital
converters, gp can be stacked in a P× 1 vector g. Adding
additive noise to each receive path, described by the P× 1
noise vector n(t), gives the array signal vector

x(t) = GAs(t)+n(t), (1)

where G = diag(g) is a diagonal matrix with the receive
path gains on the main diagonal.

The output of the kth beamformer can be described by
yk(t) = wH

k x(t), where the P× 1 vector wk contains the



beamformer weights and H denotes the Hermitian trans-
pose. Note that if weights are set to zero except one, which
is set to unity, the beamformer can select the output signal
of a specific element. The weights for K beamformers can
be stacked in a matrix W = [w1, · · · ,wK ] such that the out-
put signals of the K beamformers can be described by the
K×1 vector

y(t) = WHx(t) = WHGAs(t)+WHn(t). (2)

In generalised self-holography, these output signals are cor-
related with the output signal from the reference beam
yref(t) = wH

refx(t). The expected value of these K×1 corre-
lations is

rref = E
{

y(t)yH
ref(t)

}
= WHGΣsGHwref +WH

Σnwref, (3)

where Σs and Σn represent the covariance matrices of the
source signals and the noise signals, respectively, which are
assumed to be mutually uncorrelated. Using the Khatri-Rao
product, the column-wise Kronecker product denoted by ◦,
and the fact that G = diag(g) and Σn = diag(σn), we can
write this as

rref =
((

ΣsGHwref
)T ◦WH

)
g+WHdiag(wref)σn. (4)

Self-holography as described in [2] also uses the autocor-
relations of the output signals from the individual receiv-
ing elements to apply appropriate corrections for the noise
power in the measurements. Although it seems natural to
generalise this to the autocorrelations of the beamformer
output signals, this will usually lead to an ill-conditioned
problem due to the fact that all beamformers form very
similar superpositions of the noise powers of the individ-
ual receiving elements. It is therefore better to measure the
autocorrelations of the output signals from the individual
receive paths. In most radio interferometers, this is the case
as they are commonly used for diagnostic purposes. These
autocorrelations can be described by the P×1 vector [2]

rac = vecdiag
(
E
{

x(t)xH(t)
})

= diag
(
vecdiag

(
ΣsGH))g+σn, (5)

where vecdiag(·) converts the main diagonal of a matrix
into a column vector and diag(·) converts a vector into a
square diagonal matrix with the elements of the vector on
its main diagonal.

By stacking (4) and (5), we obtain[
rref
rac

]
=

[ (
ΣsGHwref

)T ◦WH WHdiag(wref)
diag

(
vecdiag

(
ΣsGH

))
I

][
g

σn

]
=

[
M11 M12
M21 M22

][
g

σn

]
= Mθ , (6)

where I denotes the identity matrix. This is the mea-
surement equation for generalised self-holography, which

should be inverted to obtain estimates for the receive path
gains and noise powers from the measurements. If the mea-
surement matrix is not invertible, this implies that the cho-
sen set of K beams is not suitable for self-holography. As
a minimum requirement, we need K ≥ P. If W is equal
to the identity matrix, the measurement equation simplifies
to the measurement equation for self-holography based on
the correlations with the signals from individual receiving
elements as described in [2].

3 SIR for generalised self-holography

When inverting (6), we can identify two scenarios: K = P
and K > P. in the first case, M is a square matrix and its
inverse can be calculated using

M−1 =

[
S−1 −S−1M12M−1

22
−M−1

22 M21S−1 M−1
22 +M−1

22 M21S−1M12M−1
22

]
,

(7)
where S = M11 −M12M−1

22 M21. In the second case, the
Moore-Penrose pseudo-inverse can be used, i.e., M† =
(MHM)−1MH . Assuming that all beams are formed simul-
taneously, forming more than P superpositions of the P in-
put signals should not provide additional information. I will
therefore focus on the case K =P and use it to assess the im-
plications of (7) in the context of interfering sources. The
simulations presented in the next section will corroborate
this reasoning by showing that similar results are obtained
for K > P.

Combining (7) with (6), we find that, for K = P,

g = S−1 (rref−WHdiag(wref)rac
)
. (8)

Following the same reasoning as in [2], we split the source
covariance matrix in a contribution from the calibration
source, Σc, and a contribution from the interfering sources,
Σint. Substitution of (3) and (5) in (8) with Σs = Σc +Σint
while ignoring the noise contribution gives

g = S−1
(

WHG̃ΣcG̃Hwref +WHG̃ΣintG̃Hwref +

−WHdiag(wref)vecdiag
(

G̃ΣcG̃H
)
+

−WHdiag(wref)vecdiag
(

G̃ΣintG̃H
))

(9)

where G̃ denotes the true values of the gains. As shown
in [2], iterative application of this solution converges to the
true gain values in the absence of interferers. We can there-
fore quantify the relative gain estimation bias introduced by
the presence of interferers by

∆g
g

=

=
C
(

G̃ΣintG̃Hwref−diag(wref)vecdiag
(

G̃ΣintG̃H
))

C
(

G̃ΣcG̃Hwref−diag(wref)vecdiag
(

G̃ΣcG̃H
)) ,

where C = S−1WH and the divisions should be read as
element-wise divisions. This ratio represents the inverse of
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Figure 1. Station layout assumed in the simulations.

beamformer setting K κ(M)

I l,m ∈ [−1,1],∆ = 0.1 441 8.65 ·103

II l,m ∈ [−0.75,0.75],∆ = 0.1 256 1.83 ·104

III l,m ∈ [−0.75,0.75],∆ = 0.05 961 1.07 ·104

IV l,m ∈ [−0.5,0.5],∆ = 0.05 441 2.99 ·104

V W = I 256 257

Table 1. Beamforming scenarios used in the simulations.

the SIR in the context of a self-holography measurement.
To get a useful expression for the SIR that can be used to
assess the expected accuracy of self-holography calibration
in a given context, it is convenient to make two simplifying
assumptions. The first assumption is that the source is lo-
cated at boresight, so that wref = 1, i.e., a vector containing
only ones. The second assumption is that the calibration
converges reasonably well, so that g can be compensated
with increasing accuracy over the iterations, so that we can
assume G = I. Also note that, for a properly conditioned
problem, C is invertible so that we can pre-multiply (regu-
larise) both the numerator and denominator by C−1. Com-
bined, this gives

∆g
g

=
Σint1−vecdiag(Σint)

Σc1−vecdiag(Σc)
=

1
SIR

, (10)

where, as before, the divisions need to be interpreted as
element-wise divisions.

4 Simulations

The inverse relationship between the relative gain estima-
tion bias and the SIR was tested in simulations of a 38-
m low-frequency aperture array station of the SKA oper-
ating at 100 MHz. The station layout is shown in Fig. 1.
In these simulations, a calibration source with unit power
was located at boresight in the presence of 1 to 5 inter-
fering sources. These interfering sources were randomly
placed with a radial position uniformly distributed between
a direction cosine of 0.1 (to avoid confusion with the cali-
bration source) and 1 and an azimuthal position uniformly
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Figure 2. Average relative gain estimation bias versus the
inverse of the median SIR for each of the 5 source models
for beamforming scenario I.

distributed between 0 and 2π sr. The interfering sources
had powers uniformly distributed between 0 and 1. The
source covariance matrix of the interferers was scaled by a
factor 0.01 to 19.81 in steps of 0.2 to test different SIRs for
each source model. This whole exercise was repeated for
five beamforming scenarios as listed in Table 1. The sec-
ond column defines the grid of beams forms by specifying
the interval and stepsize for the direction cosines l and m,
except for the last scenario where W = I, i.e., the scenario
in which the signal from the reference beam is correlated
with the signal from the individual antennas. The third col-
umn shows the number of beams formed (K) and the last
column gives the condition number of the measurement ma-
trix, κ(M).

Equation (10) presents the general case in which the SIR
and, hence, relative gain estimation bias, may differ for dif-
ferent elements in the array. Although the averaging over
each row of Σint described by Σint1 signifies that not all el-
ements may be equally affected by the interfering sources,
depending on array and source geometry, for the random
array and source geometry used in these simulations, it is
usually reasonable to consider only the average relative gain
estimation bias and average SIR. In these simulations, I en-
countered a few cases in which the specific source and array
geometry produced an outlier in the SIR for some elements.
For robustness to these outliers, I have therefore used the
median SIR instead of the mean SIR. Figure 2 shows the
results for all five source models for the first beamforming
scenario. These results clearly show the inverse relationship
between the relative gain estimation bias and the SIR.

Figure 3 shows the results for all five beamforming scenar-
ios with three interfering sources present. It should be noted
that a new set of three interfering sources was generated for
each scenario, i.e., the interfering source model is not the
same for the five scenarios. Despite this difference, the av-
erage relative gain estimation bias is predicted very well by
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Figure 3. Average relative gain estimation bias versus the
inverse of the median SIR for all beamforming scenarios
listed in Table 1 with 3 interfering sources present.

the inverse relationship with the median SIR as calculated
based on Eq. (10). This corroborates the generality of this
expression and the intuition that K = P is sufficient to make
self-holography work.

Generalised self-holography provides a lot of freedom to
set up the experiment by choosing various beamforming
schemes. This begs the question how this may help. In
general, a larger number of statistically independent mea-
surements, for example multiple batches of beam measure-
ments observed consecutively, will improve the precision of
the gain estimates. If K > P, one can also ignore beams that
are directly pointed at an interfering source in an attempt to
improve robustness to this interfering source. On the other
hand, a different choice for the grid of beams also has a
significant effect on the condition number of the measure-
ment matrix as indicated by the fourth column of Table 1.
A higher condition number increases the susceptibility of
the solution to noisy measurements. In that sense, self-
holography based on correlation between the signal from
the reference beam and the signals from the individual el-
ements as considered in [2] is the best option among the
beamforming scenarios considered here. It owes this low
condition number to the orthogonality of the columns of the
beamforming matrix W. Several other matrices, including
the matrix describing the discrete Fourier transform (DFT
matrix), have the same attractive property. Although these
matrices may not produce physically meaningful beams for
a given array layout, they can be used to make superposi-
tions of receiving element signals that may be highly suit-
able for self-holography.

5 Conclusions

In this paper, I presented a general formulation of the self-
holography calibration method to capture variations of this
method exploiting different beamforming schemes. Based
on this formulation of the self-holography problem, an ex-

pression for the relative gain estimation bias due to the pres-
ence of interfering sources was derived. This expression in-
dicates that this bias is inversely proportional to the signal-
to-interference ratio (SIR) as defined in Eq. (10). This result
was confirmed by simulations for various levels of interfer-
ence, various randomly generated interfering source con-
figurations and five different beamforming schemes. The
generality of the derived expression implies that various
beamforming options provide similar robustness to inter-
fering sources. However, the chosen beamforming scheme
has a significant impact on the condition number of the
measurement matrix and therefore on the susceptibility to
measurement noise. It is therefore recommended to choose
a beamformer matrix consisting of (close to) orthogonal
beamforming weight vectors, even if those do not provide
phyiscally meaningful beams. Examples of such beam-
former matrices are the identity matrix, in which each bem-
former vector selects the signal from a single element, and
the matrix describing the discrete Fourier transform (DFT
matrix).
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