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Abstract

A magnetized plasma strongly interacts with microwaves,
when their angular frequency ω is around the electron cy-
clotron resonance (ECR) one, that isΩ = e|Bs|/me, with Bs
the static flux density. The case of small ion sources with
Bs ∼= 0.5 to 1 T, where wavelength and plasma chamber ra-
dius are comparable, is studied with full wave equations,
assuming a collision rate ν and a plasma of given density.
Wave initially launched in the TE mode from a waveguide
(TE11 for a circular waveguide), aligned with the axis z of
a cylindrical plasma chamber and of Bs, are partially con-
verted to Ez waves; use of azimuthal symmetry to consider
only the m = 1 component is discussed. Large reflections
are sometimes observed as a function of ratio of plasma an-
gular frequency ωp(z) and ω , possibly due to model simpli-
fication (density constant in x and y). Extension to off-axis
waveguides (perhaps rectangular or coaxial) is mentioned.

1 Introduction

ECR (Electron Cyclotron Resonance) ion sources[1] are
standard suppliers of multiply charged ions for accelera-
tors: plasma electrons are efficiently heated by microwave
while spiraling in a static magnetic field Bs/μ0 which also
provides for their confinement. Same resonance is used for
tokamak heating. While plasma chamber dimension (radius
Rc or minor radius) is much larger than wavelength λ in lat-
ter case (where quasi-optical microwave study is possible)
and for large ion sources, for compact ion sources[2, 3, 4]
values of Rc and λ may be comparable, so that full wave
equations must be solved. Some schematic geometries are
shown in Fig. 1; in our case the plasma chamber is a cylin-
der with axis z, length Lp = 0.18 m and Rc = 0.03 m. The
input waveguide may be a WR62, typically off-axis[2], or
a coaxial line[1]; in this preliminary study we simply con-
sider a radius b circular waveguide centered on axis z; in
most examples b = 9.25 mm (so fundamental mode has
the same cutoff frequency as in a WR62) and Bs > 0.45
T. Waveguide input is at the z=−Lg plane, with Lg = 0.06
m, while its junction with plasma chamber is in the z = 0
plane.

2 Basic equations and assumptions

We consider that an assigned static magnetic field Bs/μ0 is
applied to plasma, plus an unknown radiofrequency with
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Figure 1. (a) rz section of plasma chamber and circular
waveguide; (b) its z = 0 section, with metal walls hatched;
(c) as ’b’ but with a rectangular waveguide off-axis; (d) as
’b’ but with a coaxial waveguide.

angular frequency ω , magnetic induction B and electric
field E, much weaker than the static field, that is E ∼=
O(cB) � c|Bs| (larger than 1.3× 108 V/m). At GHz fre-
quencies [in our example ω/(2π) = 14.4 GHz], plasma
ions are considered at rest, while electrons move as free
charges in vacuum giving a current density j= σ ∗E where
conductivity σ in general is an integral operator and terms
as E2 are neglected since E � cBs. The simplification
of j locally dependent on E is often used[5], so j = σ ·E
with σ a matrix; the charge density is then ρ = i div j/ω
understanding a time dependence exp(iωt) (as in phasor
notation[6]).

There are two equivalent approaches to account for j; one
is to consider vacuum fields H = B/μ0 and D = ε0E and j
as a free current; this gives

curlH= j+ iωD= iωε0K ·E , K = I3− iσ/(ωε0) (1)

with I3 the identity matrix, which introduces the effec-
tive dielectric tensor K. The other approach considers a
plasma as a medium with effective electric displacement
Ď= ε0K ·E, no other free current ǰ= 0 or charge ρ̌ = 0; this
is manifest in the second step of eq. (1), which so represents
both approaches. By substitution of curlE = −iωH/μ0 in
eq. (1), it follows the wave equation

curlcurlE= (ω/c)2K · E ; (2)

from it or eq. (1) we get the constraint divK ·E = 0, very
helpful in numerical analysis and to supplement boundary



conditions. Moreover, in an empty waveguide, electric vec-
tor potential F is commonly defined and used[6]; for plasma
filled waveguides, this constraint shows that K ·E is curl of
some vector field; we thus generalize electric vector poten-
tial so that

E=−K−1 · curlF (3)

where F has manifestly dimension of [V]; but due to com-
plicate expressions of K−1 (and its derivatives) use of F in
construction of solutions appears challenging.

For a cold magnetized plasma[5, 7] K can be obtained as
follows: to reach stationary plasma conditions, electron
energy should have some dissipation mechanism, here for
simplicity a friction force Ff =−meνv, where the collision
frequency ν is taken as a constant independent of velocity v
(as in electron-neutral collision average), for a preliminary
sensitivity study on ν . Current density is then j = −neev
with ne the electron density and motion equation gives

(iω +ν)v=−(e/me)(E+v×Bs) (4)

This introduces the complex frequency w= ω − iν and two
real positive angular frequencies:

ωp =
[
nee2

ε0me

]1/2
, Ωc =

e|Bs|
me

(5)

whereΩc is the cyclotron frequency and ωp the plasma fre-
quency. Solving eq. (4) for v and calculating j gives K and
its inverse M = K−1 as

K =

⎡
⎣ k1 k2 0
−k2 k1 0
0 0 k3

⎤
⎦ , M =

⎡
⎣k1/ks −k2/ks 0
k2/ks k1/ks 0
0 0 1/k3

⎤
⎦
(6)

where the coordinate 3 (that is z) is parallel to Bs and 1 and
2 are orthogonal; here k3= 1−ω2p/(wω) and ks=(k21+k22),
with

k1 = 1−
ω2p
ω

w
w2−Ω2c

, k2 =−
ω2p
ω

iΩc
w2−Ω2c

(7)

where the Appleton ionospheric parameters XA =ω2p/(ωw)
and YA = Ωc/w are clearly recognisable.

3 Boundary conditions (bc) and solution

To reliably solve eq. (2) we need to set boundary con-
ditions (bc) for its 3 three components (say Er, Eθ and
Ez), in the Neumann or Dirichlet form. On metal walls
(of infinite conductivity) we have the tangential component
E‖ = 0 which provides only two conditions; note they im-
ply Bn = 0, where n indicates the normal component (by
convention directed outwards [8]). A third condition comes
from divK ·E= 0. Just to simplify algebra, we assume that
Bs is always directed along z, which is approximately true
for the ECRIS solenoid; most ECRIS have also a sextupole
field which is here neglected; moreover, we consider that
Bz and ωp are not functions of x and y. Then, on the z = 0

Figure 2. Profiles pb = Ωc(z)/ω and pp = ωp/ω vs z.

or z = Lp faces (set bc1), we have that fields Eϑ = 0 and
Er = 0 vanish, as well as their derivatives respect to r and
ϑ (written as Er,r and Er,ϑ and similarly); then

0= divK ·E= (k3Ez),z → Ez,z =−Ez(k3,z/k3) (8)

which counts as a Neumann mixed[8] condition for Ez. On
the r = Rc or r = b surfaces (set bc2) we have Ez = Eϑ = 0
and third condition reduces to

0= k1(rEr),r+ k2(rEϑ ,r−Er,ϑ ) (9)

which (even if complicate) still gives a Neumann condi-
tion for Er provided that k1 �= 0 (generally true). These
conditions greatly simplify for an empty waveguide since
k1 = 1 = k3 and k2 = k3,z = 0 hold there. Figure 2 shows
typical profiles of pb(z) = Ωc(z)/ω and pp(z) = ωp(z)/ω;
note that Bz ∝ pb and ne ∝ p2p; the latter is parametrized
by its maximum ol at z = Lp/2, its end value oh and its
maximum inside waveguide ow; for z ≥ 0 we set pp =
ol+(oh−ol)(z−Lh)2/L2h with Lh = Lp/2, while for z< 0
we have

pp(z) = (1+(z/Lg))2Θs(z+Lg/2,Lt) (10)

where Θs is the Heaviside function, smoothed within a
length Lt = 0.01 m [8]. The first factor gives a quadratic
rise and the second makes pp = 0 for z≤− 1

2Lg−Lt , where
waveguide is left empty and we can launch a TE11 wave;
shown profile has ol = 2 (very large value, changed dur-
ing scans) and ow = oh = 0.4ol . The profile for Bz is kept
simpler and fixed, with Bz = Bh = 1.04 T for z < 0 and
Bz = Bo+(Bh−Bo)(z−Lh)2/L2h for z≥ 0, to follow (very
roughly) data for a 14.4 GHz ECRIS[2].

Cylindrical symmetry makes components with different az-
imuthal wavenumbers m uncoupled, so that base functions
are

Er = [Esr (r,z)sin(mϑ)+Ecr (r,z)cos(mϑ)]eiωt (11)

and similarly for Eϑ and Ez; in the following m= 1 and kz,
βo are the (positive) numeric solutions of

ω2

c2
= k2r + k2z =

3.83172

b2
−β 2o , kr =

1.8412
b

(12)

within shown precision. The input wave is ∝ exp(−ikzz)
and the reflected wave is ∝ exp(ikzz), so that

a+(r,z)≡ eikzz[a(r,z)+(i/kz)a,z] , a∈ {Esr ,Ecr ,Esϑ ,E
c
ϑ}
(13)



Figure 3. Maps of Ez field components.

Figure 4. Maps of leading fields.

selects the forward wave projected at z = 0 (and a− se-
lects the backward wave). We choose y-polarization for the
launched TE11 wave, so that[6]

Es+r = 2mJm(krr)/(krr) , Ec+ϑ = 2J′m(krr) (14)

and Ec+r = 0 = Es+ϑ are the bc at z = −Lg, where input
amplitude Ey(r = 0) = 1 V/m is understood. Moreover
since Ez ∝ eβoz is there evanescent, we get the other bc
Ecz,z = βoEcz and Esz,z = βoEsz .

Thanks to eq. (11), numerical solution can be reduced to
a 2D geometry, for the six components with m = 1, in per-
spective allowing a very refined mesh (now on the exposed
corner mesh size is hc ∼= 10−5 m). To use a standard PDE
interface [8] which gives full control on boundary condi-
tions, some rearrangements of eq. (2) were performed,
mainly grouping terms in the r curlcurlE expression.

4 Results

The field pattern of eq. (2) solutions is very rich and com-
plicate, and some selection of figures is necessary. We
start from ν/ω = 0.05, since lower values implies spatially
sharper resonances (also called ECR layers) with more nu-
merical effort, and higher values implies a really large col-
lision frequency; firstly we consider a very low density
plasma ol ≡ max(ωp/ω) = 0.01, so to resemble an empty

Figure 5. Forward and backward waves in Esr ; eq. (14)
level is marked ’(in)’.

cavity. Notwithstanding this, some conversion from TE11
to Ez appears, as shown in Fig. 3.

The leading components Esr and Ecϑ are shown in Fig. 4;
relative position of maxima of real and imaginary parts are
related to wave propagation, which anyway is better seen
in Fig. 5, where Es±r components are plotted as a function
of z for a fixed r = b/2. Inside waveguide traveling wave
amplitudes are constant (as they must) while they change
in the cavity and at the junction, for effect of plasma inter-
action, cavity wider radius and junction corners. So most
important quantities to monitor among simulations are: the
reflection coefficient Re f l = |E−

⊥|
2/|Ey(in)|2 summing on

r,ϑ and c,s components at input z = −Lg; the ’conver-
sion to Ez’ coefficient F1 defined as F1 = maxz∈D(|Ecz |2+
|Esz |2)1/2(z)/|Ey(in)| where the maximization domain D is
z> 0.06 m ; and the rotation ϑR of reflected waves, defined
as ϑR = atan(|E−

x |/|E−
y |) at input. Morevoer, |Ey(in)| =

|E+
⊥| at input and all quantities are calculated on the r= b/2

line for simplicity. In Fig. 4 case Re f l = 0.877, showing that
also a very weak plasma adsorbs 12 % of input power (be-
cause wave passes two times in the cavity, that is 4 times
through ECR layers); anyway for this weak plasma, rota-
tion ϑR = 4.3 mrad and conversion factor F1 = 0.0011 are
smaller than for denser plasmas (Fig. 6). About conver-
sion to Ez note that input waveguide radius is smaller then
required tor TM10 propagation, so that Ez can not exit as
a backward wave, but it makes a standing wave pattern in
the plasma chamber (whose strength is measured by F1 as

Figure 6. Sensitivity to collisions: reflection, rotation and
Ez-conversion factor F1 vs ν/ω for ol =maxωp/ω = 0.05



Figure 7. As Fig. 6, but for ol =maxωp/ω = 0.1

Figure 8. Sensitivity to density: reflection, rotation and
Ez-conversion factor F1 vs ol =maxωp/ω for ν/ω = 0.05

noted); about rotation note that E−
x and E−

y have a different
time phase, so ϑR is a kind of average rotation.

In Fig. 6 plasma density an increase of ne by a factor 25 (as
result of factor 5 increase of ol) allows an increase of wave
adsorption, with reflection below 10 % for ν/ω > 0.001,
and reasonable rotation and conversion factors. A further
increase of density (see Fig. 7) makes reflection larger
again, approaching 1 in the ν/ω → 0 limit (as it should).
To better see the effect of larger densities, Figs. 8 and 9 are
scans on ol =maxωp/ω for fixed collision rate ν . In Fig. 8
with ν/ω = 0.05 we note: the ωp = 0 point corresponding
to a truly empty cavity, with reflection Re f l = 1 as expected;
then Re f l sharply decreases approaching zero for ol ∼= 0.06
where ϑR has a maximum (due to the minimum of Ey re-
flection); for ol > 0.2 it appears a trend of increase of Re f l
(with fluctuations) and of F1 . Figure 9 with ν/ω = 0.1 is
similar, but for ol > 0.2 we see that Re f l ∼= 0.2 stabilizes
and F1 decreases; the reflection minimum for ol = 0.06 still
exists.

In perspective future studies may include: mesh refined on
ECR layers[4]; dependence of ν from z and improved K
models; an output waveguide (or radiation from a hole) in
z = Lp plane. In conclusion, this model demonstrates that
microwave coupling to a magnetized plasma can be reliably
studied even when cavity size is comparable to wavelength;

Figure 9. As fig. 8, but for ν/ω = 0.1

the several approximations involved with setting a 2D ge-
ometry model may help theoretical understanding, on the
ECR plasmas as well as on related plasma waves. Moreover
the 2D model has obvious advantages for parametric scans
and improving mesh accuracy. As preliminary physical re-
sults, the complete adsorption of microwave was found pos-
sible even for small collision rates and plasma densities,
while higher densities may show some mismatch (perhaps
to be tuned with magnetic field profile or more realistic ge-
ometries).
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