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Abstract

This paper proposed a new network module named as pro-
jection network, which explicitly combined radar’s projec-
tion process with trainable network. It assumes that each
2D radar cross section (RCS) map is a projection of a 3D
RCS map. And it models the projection mechanism as a
differentiable layer, so that it can be integrated with other
neural network layers, such as convolutional and pooling
layers. The proposed model is consistent with radar pro-
jection process, hence effects such as layover is considered.
It is designed and used specifically for radar applications.
This paper applied the proposed network on radar image
synthesis, and the simulation results showed great potential
of projective network.

1 Introduction

Radar image synthesis has been widely applied on Zero-
/Few-shot learning, semi-supervised learning of radar tar-
gets [1-4]. Usually the generative networks are feed with
the attributes (such as labels and orientations) of the targets,
and output the radar images. Thus training the generators
using limited number of data itself is challenging due to the
complex imaging mechanisms of radar.

In [5], as inspired by human’s one-shot learning ability,
Lake et al. combined the ideas of compositionality, causal-
ity, and learning to learn, and proposed Bayesian program
learning framework that is able to learn rich concepts from
single example. It implies that introducing physical-aware
model into deep learning framework has the potential to
boost the radar applications. In [6], Zhang et al. proposed a
complex-valued convolutional neural networks (CV-CNN)
in order to take advantage of the phase information of syn-
thetic aperture radar data. In order to address the InSAR
image synthesis problem, Nyquist mapping is proposed to
convert the input complex-valued data into real data to fit
the cGAN [4]. In [7], Wei and Chen proposed a cas-
caded convolutional neural network with skip connection
that takes the advantage of the traditional iterative algo-
rithms. But in these papers, the used modules and archi-
tectures are taken from traditional convolutional neural net-
works.

In this paper, we makes an attempt to mimic the radar’s pro-
jection process and proposes a new network module named

projection layer. It can be applied to multiple radar appli-
cations when coupled with deep learning techniques. Here
we took image synthesis as an example. We assume that a
3D radar cross section (RCS) model exists that any 2D RCS
map is a projection of it at given observation angle. Using
the training 2D RCS image, the 3D RCS can be estimated,
and then 2D RCS map at other observation angle can be
generated through projection. Via taking point spread func-
tion (PSF), the projection network is differentiable, thus the
3D RCS can be inversed using standard optimizers.

2 Projection Model

This section introduces the projection module, and its for-
ward propagation process as well as results. In order to
make the module differentiable, point spread function is
used when rasterization.

2.1 Assumption

The projection network learns a 3D RCS representation
based on single 2D RCS map. The corresponding relation-
ship between RCS σi j and the scattering coefficient Si j is

σi j = 4π|Si j|2 (1)

where, i, j ∈ {h,v} refer to the polarization of scattering and
incident electromagnetic wave. Only the single polarimetry
case is considered in this paper. The proposed projection
network is based on the following assumption: a 3D RCS
of the target exists. It corresponds to a 3D matrix, where
the value of each element is a synthetic representation of the
corresponding target point; any 2D RCS map is a projection
of it at the specific observation angle. There is no such
3D RCS in practice. This concept is further simplified as
a combination of the 2D synthetic RCS namely σσσ s ∈ Rm,n

and height distribution matrix HHH ∈ Rm,n.

2.2 Forward Propagation

Suppose the synthetic RCS and height of the target are σσσ s
and HHH; let the ground range and azimuth between each
point and the reference point be X , Y ; the depression angle
of emitted electromagnetic wave is θ ; and the orientation
angle of the target is φ . Forward propagation of projective
network is to get the projected 2D RCS σσσ = {σi j}. It can



be divided into two steps: rotate the height matrix accord-
ing to the the depression angle and the orientation first, and
then rasterization, as illustrated in Figure 1. Height, slant
range and vertical slant range after rotation are represented
by H ′, X ′, Y ′. Then we have

Figure 1. Illustration of projection and rasterization pro-
cesses.
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Then the 2D of each resolution cell is allocated according
to the rotated data, i.e. rasterization. Here the shadow effect
that the tall near-range target blocks the short far-range tar-
get isn’t took into consideration, thus HHH ′′′ is ignored. Then
the RCS at slant range x and vertical range y is

σi j =
−→
σσσ s

T f (x−
−→
XXX ′′′, y−

−→
YYY ′′′) (3)

where,
−→
XXX ′′′ means vectorization of XXX ′′′. To make rasterization

differentiable, the point spread function is introduced here
as a two-dimensional Gaussian function,

f (x,y) = exp−λ (x2+y2) (4)

A plot of 1D Gaussian function with λ = 3, 4, 5 in shown
in Figure 2. Here λ in PSF is set as 4.

Figure 2. Plot of 1D Gaussian function with λ =
3 (blue), 4 (black), 5 (green).

2.3 Simulation Results

Simulated data are used as an example. The forward prop-
agation of the network is to output the 2D RCS map given
a synthetic three-dimensional RCS. The simulated 3D RCS
model considered in this paper is shown in Figure 3. The
targets consist of three cuboids, which represents two ad-
jacent buildings with different architectures, heights and
shapes. The height of the background, and the three cuboids
are set as 1, 4 (red one), 2 (yellow one), and 1.5 (green one)
times of the resolution respectively.

As mentioned before, it is actually represented by a syn-
thetic RCS, and height distribution map. Figure 4 and
Figure 5 compared the projected results with and without
(which is considered as the ground-truth) using point spread
function. Although significant difference remains, both im-
ages show similar target profiles and distributions of strong
scattering points.

(a) Synthetic RCS (b) Height Map

Figure 3. The simulated synthetic RCS (a) and the height
(b) of the target.

Figure 4. Projected 2D RCS images via projective network
with (top row) and without (bottom row) using point spread
function: (left) θ = 15◦, φ = 15◦; (middle) θ = 15◦, φ =
45◦; (right) θ = 15◦, φ = 60◦.

3 Image Synthesis with Projection Network

3.1 Parameters Estimation

Now that the proposed projective network is differentiable,
the 3D RCS, i.e. σσσ s and HHH, can be retrieved through stan-
dard optimizers that based on back-propagation algorithms.



Figure 5. Projected 2D RCS images via projective network
with (top row) and without (bottom row) using point spread
function: (left) θ = 60◦, φ = 15◦; (middle) θ = 60◦, φ =
45◦; (right) θ = 60◦, φ = 60◦.

Based on our experience, retrieval of the two matrix si-
multaneously is challenging, thus we assume that the HHH is
known. Denote the projective network as F , then the loss
function is defined as,

L = ||F (σσσ s|HHH)−σσσ ||22 (5)

σσσ s is firstly randomly initialized; and then through back-
propagation the gradients of the loss with regard to the out-
puts (in Equation (6)) for certain iterations, σσσ s will be un-
graded and optimized via Equation (7)∼(10).

∇σσσ s =
∂L

∂F (σσσ s|HHH)

∂F (σσσ s|HHH)

∂σσσ s
(6)

mmmt = β1mmmt−1 +(1−β1)∇σσσ s (7)

vvvt = β2vvvt−1 +(1−β2)∇σσσ
2
s (8)

m̂mmt =
mmmt

1−β t
1
, v̂vvt =

vvvt

1−β t
2

(9)

σσσ
i+1
s = σσσ

i
s−

ηm̂mmt√
v̂vvt + ε

(10)

Where β1 = 0.9, β2 = 0.999, ε = 10−8 and η = 0.001. It is
worth noting that the projection network is a non-parameter
model, which makes it sensitive to the quality of training
data. In this paper, the projective network is trained with
single sample (shown in Figure 6(c)) to show its FSL abil-
ity.

Figure 6 shows the retrieved synthetic RCS, and compared
the reconstructed 2D RCS with the training image. Based
on the results, the reconstruction error is ignorable. The R2

and mean relative error (MRE) of the recovered synthetic
RCS is 0.69 and 1.67 respectively. Based on the results
in the next subsection, this amount of error is acceptable
for image synthesis. From the results, the retrieval error of
target area is larger than that of background area, due to the
layover effect.

Due to the layover effect, the estimation error is related with
the training sample chosen. Smaller orientation and depres-
sion angle brings less deformation and layover effect, thus
will result in smaller estimation error. As an example, Fig-
ure 7 and Table 1 compared the recovered synthetic RCS,
R2 and MRE using training samples of different orientation
angles. From the results, we can see that the estimation
error grows with increase of orientation angle.

Figure 6. (a) The randomly initialized synthetic RCS; (b)
retrieved synthetic RCS using single training sample of θ =
30◦, φ = 45◦ (c); (d) the reconstructed projected image; (e)
the loss, and R-square of the retrieved and real synthetic
RCS, as well as the mean relative error along training.

Figure 7. Recovered synthetic RCS using the training sam-
ple with (a) φ = 0◦; (b) φ = 15◦;(c)φ = 30◦; (d) φ = 60◦.

3.2 Image Synthesis

The retrieved synthetic RCS in Figure 6 is used in this sub-
section to synthesize 2D RCS images at other observation
angles. The results are shown in Figure 8 and Figure 9.
The reconstructed images show similar target profile as real
ones, but the strong scattering points are wrongly placed.
The reconstruction error of the first two columns are larger
than that of other examples. It reveals that the main chal-
lenge underlying the image synthesis is the shifted features
of targets under different orientation angles.



Table 1. Comparison of estimation results using training
sample of different orientation angles.

φ 0◦ 15◦ 30◦ 45◦ 60◦

R2 0.93 0.61 0.46 0.69 0.57

MRE 0.11 1.22 1.61 1.67 1.84

Figure 8. Generated images via trained projective net-
work (top row) and the corresponding simulated radar im-
ages (bottom row): (left) θ = 30◦, φ = 15◦; (middle)
θ = 30◦, φ = 30◦; (right) θ = 30◦, φ = 60◦.

4 Conclusion

This paper modeled the projection mechanism of radar sys-
tem, and proposed a so-called projective network. Using
only single example, it can learns a synthetic representa-
tion, which is then used for generating 2D RCS images un-
der other observation angles. The comparison between the
reconstructed and ground truth images showed that the gen-
erated images have the similar profile as real ones, which
verified the representation ability of proposed projective
network. It reveals that physical-aware models have great
potential for radar applications. Besides, the proposed net-
work is differentiable. Thus it can be coupled with other
neural network modules to boost the performance, which
will be explored in the future.

However, the proposed model is a simplified one that can
not be applied to practical radar data directly: 1) it assumes
that the height of the target is known; 2) the shadow ef-
fect isn’t considered in this paper; 3) the assumption of
3D RCS may not make sense in some cases. In the fu-
ture, tools such as TensorFlow Graphics can be used and
incorporated with computational electromagnetic methods
to improve the model.
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