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Abstract 
 

The paper continues research into the behavior of 

amplitude and phase of the frequency coherence function, 

found in the approximation of the double weighted 

Fourier transform (DWFT) under conditions of 

transionospheric radio signal propagation without 

reflection with due regard to the curvature of the 

ionosphere. A simulation has been carried out for random 

irregularities with the Shkarofsky spectrum, which are 

distributed in a background medium specified by 

Chapman's model. 

 

1 Introduction 
 

In earlier papers [1–6], we have proposed to use the 

DWFT approximation for describing statistical 

characteristics of a radio signal that propagates without 

reflections through a randomly inhomogeneous medium. 

As a result, we found a frequency coherence function 

characterizing wave packet spreading [1–2]. Through 

numerical simulation, we calculated modulus and 

argument of the frequency coherence function for 

irregularities described by the Gaussian spectrum and 

Shkarofsky's model [3–5], distributed in the background 

medium, which has a constant electron density and is 

specified by the Chapman function for the Gaussian 

spectrum [6]. The calculation results have shown that the 

DWFT approximation can describe diffraction effects 

during radio signal propagation through random 

irregularities with a correlation radius smaller than the 

Fresnel radius. In this case, the manifestation of 

diffraction effects in frequency coherence amplitude 

curves appears as channel bandwidth narrowing as 

compared to the amplitude obtained in the geometrical 

optics approximation. Moreover, the influence of 

diffraction effects in the amplitude curves in the case of 

the Gaussian spectrum for random irregularities with 

identical inner scales is stronger than that for Shkarofsky's 

model.  

In this paper, we continue research into the behavior of 

the frequency coherence function modulus and argument 

in the DWFT approximation under conditions of 

transionospheric radio signal propagation with due regard 

to the curvature of the ionosphere. For this purpose, we 

examine the influence of diffraction effects on the 

frequency coherence function for radio wave propagation 

through random irregularities with the Shkarofsky 

spectrum, which are distributed in a background medium 

prescribed by Chapman’s model. 

 

2 The frequency coherence function in the 

DWFT approximation 
 

As is known, for radio wave propagation in a medium 

with irregularities having scales larger than the 

wavelength, the determination of the wave field 

E( ) ( , )E z=r ρ  in a small-angle approximation reduces to 

the solution of a parabolic equation. One of the methods 

for solving this equation can be the DWFT approximation 

[1]:  

 

         

( )

{ } {

( ) }

2

0 0

2 2

0

0

2

( , , ) ,

E( , , , ) ( , , , ) /

exp 2 / (z z ) exp ik

z z i

z E z k z z

i k d sd p

ϕ ω

ω ω π

∞ ∞

−∞ −∞

−

× − + − + 

= −

× −  

  0 0

0

0ps sρ pρ s p

ρ ρ ρ ρ

ρρ

%

 (1) 

 

where  

 

                [ ]
0

( , , ) 0.5 k ( , , '), ' '
z

z

z z dzϕ ω ε= s p ρ p s% %          (2)  

 

is the partial wave phase fluctuation, the first 

approximation of the solution of the respective eikonal 

equation with 0( , , ') ( ' ) ( ' )z z z z z= − + −ρ p s p s . 
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is the field of an incident harmonic wave with an 

amplitude of 0A , with a frequency of ω ; 

0 0 0 0{ , , } { , }x y z z= =
0 0

r ρ  is the transmission 

point, { , , } { , }x y z z= =r ρ  is the receiving point,  

/k cω=  is the wave number, c  is the speed of light. We 

represent the relative permittivity of a medium ( )ε r  as 

( ) 1 ( ) ( )bε ε ε= + +r r r% , where 1 ( ) ( )bε ε+ =r r is 

the permittivity of the background medium, ( )ε r%  is the 



quasi-homogeneous random field with zero mean and 

correlation function of the electron density fluctuations 

( ), zN ρ% , ( ) ( )1 2, , , , , ,N Nz z ηξ η= =Ψ Ψ ∆1 2ρ ρ ρ ρ  

( ) ( )1 2, z , zN N=
1 2

ρ ρ% % , ( ) / 2η = +1 2ρ ρ ρ ,

,∆ = −
1 2

ρ ρ ρ  1 2 ,   z zξ = − ( )1 2 / 2z zη = + . Given 

that background medium scales greatly exceed transverse 

trajectory variations, in (3) we set 

( ( , , '), ') (0, z')b bz zε ε≈ρ p s .  

For the mutual coherence function, (1) can yield 
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The function ( ) ( )2
,N Nσ η ηΨ ρ  is defined by 

( ) ( ) ( )2
, , , (0, ),N N N dσ η η ξ η η ξη

∞

−∞

Ψ ≈ Ψρ ρ ρ , where 

( ) ( )2
0, 0, (0, ),N N ησ η η η= Ψ ρ  is the variance of 

electron density, 

0− = −
01 02

ρ ρ ρ ,
1

0 0
ˆ (X ),k k X

−
= − 0 1 2k (k k ) / 2= + , 

( ) ( )2 1 0/ 2X k k k= − = ( ) ( )2 1 2 1/k k k k= − + .  

In what follows, we consider only the reduced frequency 

coherence function when in (5) 00 0, −= =
−

ρ ρ  
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As has been shown previously [3], to simplify numerical 
calculations of multiple integral (7), instead of the integral 

representation for the field in the DWFT approximation 

we can use the expression for the field in the DWFT 

approximation for remote irregularities. In this 

approximation, we utilize new variables ρ
b

, p 's :  
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As a result, Equation (7) for the reduced frequency 
coherence function takes the following form:  
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Next, make a new change of variables:  
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where 
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Then the reduced frequency coherence function takes the 

following form:  
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In transionospheric radio wave propagation conditions, 

we should take into account the curvature of the 
ionosphere, hence in Equation (10) we turn to polar 



coordinates { } { }1 2p, , s,ϕ ϕ==
1 2

p p , and given that 

1 2ϕ ϕ ϕ= −  we get:  
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3 Numerical calculations 

 
Consider how the modulus and argument of reduced 

frequency coherence function (16) behave under 

conditions of radio wave propagation through the 

irregularities distributed in the background medium. As a 

model for irregularities, we take the spectral density 

specified by the Shkarofsky function [3] 
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where 
0 0

2 / Lκ π=  ,
m

l  and 
0

L  are the inner and outer 

turbulence scales respectively. 

Let the variance ( )2

Nσ η  be proportional to the 

background-medium density ( )2 2

0 ( )N Nσ η σ η= . Account 

for the spherical inhomogeneity of the background plasma 

density through the Chapman layer   

       { }( ){ }2
( ) exp 0,5 1 exp / 80.6,cN fη χ χ= − − −    (19) 

 

     ( )2 2
R 2 R sin( ) R / ,e e m eh Hχ η η α= + + − −     (20) 

where cf  is the critical frequency, mh is the height of the 

maximum electron density, H  is the characteristic layer 

scale, R 6370e km=  is the Earth radius, α  is the angle at 

which we can see the source from the observation point. 

Integration in (16) is performed provided that the 

inhomogeneous layer is bounded by heights 1h  and 2h  

( )1 2h h< . 

 
 
Figure 1. Modulus of coherence function versus the 

relative mismatch X  for the Shkarofsky spectrum (18) for 

models (18)–(20) with 
2

0 0.05σ = , inner scale 70
m

l mm=  

and outer scales: 5 km (blue lines), 10 km (green lines), 

and 15 km (red lines) calculated from Eqs. (16) (solid 

lines) and GO (dashed lines).    

 

 
 
Figure 2. Argument (phase) of the coherence function 

versus the relative mismatch. Designations and 

parameters are the same as in Figure 1. 

 

In Figures 1, 2 are curves of the modulus and argument of 

reduced frequency coherence function (16) for the 

following parameters: 0 100f MHz= , 0 0.05σ = , 

70ml mm= , 1 150h km= , 2 400h km= , 200H km= , 

1 2(h h ) / 2 325 kmmh = + = , 0z 0= , z 800 km= , 

R 6370e km= , 6cf MHz= . The calculations have been 

made for different outer scales 
0

L . In Figure 1, the 

manifestation of diffraction effects in curves of modulus 

of the reduced frequency coherence function (solid lines) 

is characterized by channel bandwidth narrowing as 

compared to the curves derived in the geometrical optics 

approximation (dashed lines). As in the case of radio 

wave propagation in random irregularities with the 
Shkarofsky spectrum, which are distributed in the 

background medium with a constant electron density [3–

5], the curves in Figure 1 demonstrate that the diffraction 

effects increase with decreasing outer scale 
0

L . In 



general, however, the channel bandwidth in the curves 

found for random inhomogeneous medium with 

background (18) is wider. 
 

 
 

Figure 3. Modulus of coherence function (16) for models 

(18)–(20) for / 2α π=  (solid line), / 4α π=  (green 

line), / 9α π=  (red line). Designations and parameters 

are the same as in Figure 1.  
 

Figure 3 illustrates how with decreasing angle of radio 

wave incidence relative to vertical propagation at 

/ 2α π= (blue line) the channel bandwidth decreases in 

the curves for the modulus of the reduced frequency 

coherence function at / 4α π=  (green line) and 

/ 9α π=  (red line).   

 

4 Conclusion 
 

Using the DWFT method for remote irregularities, we 

have obtained a well-behaved expression for the reduced 

frequency coherence function that takes into account the 

sphericity of a background slightly inhomogeneous 

medium.  
Through numerical calculations, we have derived curves 

of the modulus and phase of the reduced frequency 

coherence function for radio wave propagation through 

irregularities with the Shkarofsky spectrum, which are 

distributed in a background medium specified by the 

Chapman function. The simulation results have shown 
that diffraction effects narrow the channel bandwidth 

when the wave propagates in a random inhomogeneous 

medium, with scales of the spectrum smaller than the 

Fresnel radius. We have also demonstrated that at the 

deviation of the angle of incidence on an inhomogeneous 

medium with respect to vertical propagation, the curves of 
the modulus of the reduced frequency coherence function 

will get narrow. These findings are in good agreement 

with earlier results for radio wave propagation in a 

randomly inhomogeneous medium with a background 

having a constant electron density. 
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