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Abstract

The modified transmission eigenvalue problem is
a special eigenvalue problem that arises in inverse
scattering of inhomogeneous media. We confine to
the case where the medium is spherically symmet-
ric and address the inverse problem by introducing
computational methods to estimate the unknown re-
fractive index of the medium, from the knowledge of
a subset of the spectrum.

1 Introduction

Measured scattering data including transmission
eigenvalues are important for the determination of
unknown parameters of a medium and for appli-
cations such as nondestructive testing of materials.
More specifically, the transmission eigenvalue prob-
lem is indicated as one of the most challenging sub-
jects of inverse scattering theory for inhomogeneous
media and has been studied in many directions lately
(see e.g. [2, 3, 4] and the references therein).

Although, transmission eigenvalues are determined
from the properties of the scatterer and their depen-
dence on the interrogating wave frequencies needed
for evaluation, makes them difficult to use. As of
recently, new eigenvalue problems have been intro-
duced, in an effort to bypass this obstacle. The main
idea is to fix the wave number and use new artificial
parameters that in turn play the role of the spectral
parameter for the scattering problem. One approach,
is to artificially embed the medium into another in-
homogeneous medium, which leads to a modified far
field operator [1]. The corresponding eigenvalues,
namely the modified transmission eigenvalues, can
be determined from scattering data and it is shown
that they carry information about the scattering ob-
ject [1, 5, 8].

The modified transmission eigenvalue problem with
an artificial metamaterial background, has the fol-
lowing formulation: find λ ∈ C such that there is

a non trivial pair of solutions (w,v) for the system

∆w+ k2n(x)w = 0, x ∈ Db (1)
(−a)∆v+ k2

λn0(x)v = 0, x ∈ Db (2)
w = v, x ∈ ∂Db (3)

∂w
∂ν

= (−a)
∂v
∂ν

, x ∈ ∂Db (4)

where Db ⊂ Rm is a bounded domain with Lipschitz
boundary ∂Db, k > 0 is the fixed wave number, n ∈
L∞(Db) is the refractive index, n0 ∈ L∞(Db) is the ar-
tificial refractive index, ν is the outward unit normal
to ∂Db and a > 0. Assuming that ℜ(n), ℜ(n0) > 0
and ℑ(n), ℑ(n0) = 0, secures that the metamaterial
refractive index −n0(x)/a is real and negative val-
ued.

In the classic transmission eigenvalue problem, the
wave number coincides with the spectral parameter
and therefore multifrequency data are required for
eigenvalues determination. For the modified prob-
lem (1)-(4), λ plays the role of the spectral parameter
and the wave number is fixed. Thus, a single wave
number suffices for the measurement of λ from scat-
tering data.

In [8], we proposed a spectral Galerkin method to
approximate the modified transmission eigenvalues
in general domains. In this paper, we apply this
method to spherically symmetric layered media with
piecewise constant refractive index. We consider the
corresponding inverse problem, to estimate the re-
fractive index from the knowledge of a subset of the
spectrum. Firstly, we address the inverse problem
by using the few larger eigenvalues to reconstruct a
refractive index with two layers. Next, we define a
Newton-type inversion scheme for the general spher-
ically stratified domain. Our approach is based on
the computational methods of the inverse transmis-
sion eigenvalue problem considered in [9, 10]. For
the purposes of the present work, we use modified
instead of classic transmission eigenvalues.
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2 Computational methods for the in-
verse eigenvalue problem

Our aim is to provide numerical evidence that
modified transmission eigenvalues carry information
about the unknown refractive index. We restrict our
analysis in the spherically symmetric case, assuming
that Db is the unit disc B(0.1) of R2 and a, n0 are
positive constants.

2.1 The inverse problem for a domain
with two layers

We choose our domain to be a unit disc with two lay-
ers and we assume that the corresponding refractive
index is a piecewise constant function:

n(r) :=

{
n1 0 < r < r1

n2 r1 < r < 1

which is discontinuous at r = r1. For this sim-
ple case, we can analytically compute the modi-
fied transmission eigenvalues, by using separation of
variables and applying the transmission and continu-
ity conditions in the boundaries. The corresponding
eigenfunctions of (1)-(4) have the following form:

vm(r,θ) =amJm

(
k

√
λn0

−a
r

)
eimθ

wm(r,θ) =

{
bmJm(k

√
n1r)eimθ(

cmJm(k
√

n2r)+dmNm(k
√

n2r)
)

eimθ

for m = 0,1, . . . , where Jm and Nm are Bessel and
Neumann functions, respectively. Therefore, λ is a
modified transmission eigenvalue if and only if is a
zero of the determinant:

det



Jm

(
k
√

λn0
−a

)
0 −Jm(k

√
n2) −Nm(k

√
n2)

(−a) d
dr Jm

(
k
√

λn0
−a r

)∣∣∣
r=1

0 − d
dr Jm(k

√
n2r)

∣∣∣
r=1

− d
dr Nm(k

√
n2r)

∣∣∣
r=1

0 Jm(k
√

n1r1) −Jm(k
√

n2r1) −Nm(k
√

n2r1)

0 d
dr Jm(k

√
n1r)

∣∣∣
r=r1

− d
d Jm(k

√
n2r)

∣∣∣
r=r1

− d
dr Nm(k

√
n2r)

∣∣∣
r=r1


(5)

On the other hand, we use the Galerkin method de-
fined in [8], to numerically approximate the eigen-
values. A weak solution of (1)-(4) defined on B(0,1),
is a function pair (w,v) that solves the following
equation:∫

B
∇w ·∇w′dx+a

∫
B

∇v ·∇v′dx (6)

− k2
∫

B
n(x)w ·w′dx+ k2

λ

∫
B

n0v · v′dx = 0

for all (w
′
,v
′
)∈H (B) := {( f ,g)∈H1(B)×H1(B) :

f = g on ∂B}. For the Galerkin approximation

scheme, we choose an appropriate N-dimensional or-
thonormal system {(φi,ψi)}N

i=1 in H (B). Then, the
discrete generalized eigenvalue problem for (6) fol-
lows:

M(N)
1 c =−λ

(N)M(N)
2 c (7)

where M1,M2 are the N×N matrices:

M(N)
1 :=

∫
B

∇φi ·∇φ jdx+a
∫

B
∇ψi ·∇ψ jdx

− k2
∫

B
n(x)φiφ jdx

M(N)
2 :=k2

∫
B

n0ψiψ jdx

(8)

and c = (c1,c2, ...,cN)
T ∈ RN , i, j = 1,2, ...,N. In

[8], it is shown that the approximate eigenvalues
λ (N) converge to the eigenvalues of (1)-(4).

The idea for solving the inverse problem, is to min-
imize the relative percent error between the first m
computed and analytically known eigenvalues

f (n) :=
m

∑
i=1

|λ (N)
i (n)−λi|
|λi|

% (9)

with the piecewise constant index being an unknown.
From analytical computations using (5), we noticed
that eigenvalues have significant difference in order
of magnitude. As a result, we choose to minimize
the relative percent error instead of the absolute er-
ror. An example of this inversion method, applied
for simple case of a constant index, is given in [8].

For the piecewise constant index, we use a basis of
40 eigenfunctions and compute the corresponding
40×40 matrices defined in (8), for 0.1≤ r1 ≤ 1 with
step 0.1. We solve the generalized eigenvalue prob-
lem (7) for indices in the range: 0.1 ≤ n1,n2 ≤ 10
and step 0.1, using matlab function eig. We create a
database of computed eigenvalues λ (N) for all possi-
ble combinations of (n1,n2,r1), and by minimizing
the error (9) for the largest m = 4 eigenvalues, we
reconstruct n(r). Some examples are given in Table
1, where in all cases we have fixed the wave number
at k = 0.5 and the metamaterial parameters at a = 2
and n0 = 1.

There are cases where the reconstructions are not ac-
curate enough. As a result, we consider the possi-
bility of using modified transmission eigenvalues for
multiple wave numbers. This could potentially show
that spectra coming from one wave number, are not
enough for the determination of an unknown refrac-
tive index. In Table 2, we give some examples where
we use the largest m = 4 eigenvalues corresponding
to k = 0.5 and k = {0,1, 0.2, 0.3, 0.4, 0.5} respec-
tively. When five wave numbers instead of one are
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Table 1. Reconstruction of a piecewise constant re-
fractive index from modified transmission eigenval-
ues

(n1, n2, r1) computed λ
(N)
i reconstruction

(9.2, 1.5, 0.3) (2.6398,−36.5788,−98.7148,−115.1933) (8.5, 1.6, 0.3)

(6, 0.3, 0.4) (1.4268,−37.2794,−99.2614,−116.3238) (5.6, 0.4, 0.4)

(2.1, 3.5, 0.5) (3.6369,−35.4089,−97.7453,−114.2539) (2.7, 4, 0.8)

(3.2, 4.8, 0.7) (4.8283,−34.6907,−97.1716,−113.1924) (3.3, 5.4, 0.8)

(0.2, 4, 0.9) (0.9394,−36.6911,−98.5589,−116.7713) (0.2, 4, 0.9)

Table 2. Reconstruction of a piecewise constant re-
fractive index from modified transmission eigenval-
ues corresponding to one and five wave numbers re-
spectively

reconstruction reconstruction
(n1, n2, r1) k = 0.5 k = {0,1, 0.2, 0.3, 0.4, 0.5}

(9.2, 1.5, 0.3) (8.5, 1.6, 0.3) (9.2, 1.5, 0.3)

(2.1, 3.5, 0.5) (2.7, 4.0, 0.8) (2.4, 3.4, 0.5)

(0.2, 4.0, 0.6) (1.4, 8.1, 0.9) (0.2, 4.0, 0.6)

(3.2, 7.6, 0.6) (4.4, 9.1, 0.9) (2.2, 7.3, 0.5)

(7.5, 1.2, 0.2) (3.4, 1.6, 0.3) (7.5, 1.5, 0.2)

used, the reconstructions are significantly improved.
We also tested our computational method by adding
0.1% error to the eigenvalues and the reconstructions
were successful as well. From the above examples,
we see that the few largest modified transmission
eigenvalues provide information about a piecewise
constant refractive index, including the unknown po-
sition of the discontinuity. As a result, this method
can be useful in applications like non destructive
testing of materials with two layers.

2.2 A Newton-type scheme for the gen-
eral spherically stratified domain

We now define a Newton-type method, to estimate
a general piecewise constant index from a subset of
the spectrum. In contrast with the previous inversion
scheme, we do not have to pair original and com-
puted eigenvalues and minimize their relative error
to reconstruct the unknown index.

We assume that B is a unit disc with L−layers such
that B = ∪L

i=1Bi and the corresponding boundaries
{∂Bi}L

i=1 are concentric circles. The picewise con-
stant refractive index is given by:

n(r) :=


n1 r ∈ B1
...
nL r ∈ BL

The following Newton method, was initially devel-
oped for inverse mass-spring vibrating systems in

[7]. Authors of [9, 10], adapted that method to the
inverse quadratic eigenvalue problem for the classic
transmission eigenvalues. In this work, we modify
the algorithm and apply it to the inverse generalized
eigenvalue problem (7), for modified transmission
eigenvalues.

We rewrite matrices (8) in the following form:

M(N)
1 := ∇Φ

(N)+a∇Ψ
(N)− k2

L

∑
l=1

nlΦ
(N)
l

M(N)
2 := k2n0Ψ

(N)

(10)

where

∇Φ
(N) =

∫
B

∇φi ·∇φ jdx, ∇Ψ
(N) =

∫
B

∇ψi ·∇ψ jdx

Φ
(N)
l =

∫
Bl

φiφ jdx, Ψ
(N) =

∫
B

ψiψ jdx

for i, j = 1,2, ...,N and n0 being a constant. The in-
verse spectral problem is given a set of eigenvalues
S = {µi}N

i=1 to determine the scalars {nl}L
l=1 such

that P(λ ) = M(N)
1 +λM(N)

2 has spectrum σ(P(λ )) =
S.

The Newton method seeks a vector n = (n1, . . . ,nL)
which solves the nonlinear system f (n) =
( f1(n), . . . , fN(n)))> = (0, . . . ,0)>, where:

fi(n) :=det

[
∇Φ

(N)+a∇Ψ
(N)− k2

L

∑
l=1

nlΦ
(N)
l

+µi

(
k2n0Ψ

(N)
)]

In cases where the number of layers L is smaller
that the number of eigenvalues, we have an overde-
termined system of equations and the corresponding
method is a Gauss-Newton iterative method for an
unconstrained minimization problem [6].

2.2.1 The algorithm

We describe the main steps of the Newton-type iter-
ation method:

Input

• the artificial metamaterial parameters a, n0 and
the fixed wave number k

• the set of ∇Φ(N), ∇Ψ(N), {Φ(N)
l }

L
l=1 and Ψ(N)

N×N matrices
• an initial estimate of n(0) = (n(0)1 ,n(0)2 , · · · ,n(0)L )

of the unknown refractive index {nl}L
l=1

• the set S = {µi}N
i=1 of modified transmission

eigenvalues
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Table 3. Reconstruction of a piecewise constant
refractive index with five layers with the Newton
method

(n1,n2,n3,n4,n5) initial guess reconstruction steps
(2.3, 6.7, 8.5, 4.1, 3.0) (5, 5, 5, 5, 5) (2.30, 6.69, 8.50, 4.09, 2.99) 14

(9.0, 7.0, 3.0, 8.0, 2.0) (6, 6, 6, 6, 6) (8.99, 7.00, 2.99, 7.99, 2.00) 12

(0.5, 7.2, 7.2, 0.3, 0.3) (4, 4, 4, 4, 4) (0.49, 7.20, 7.19, 0.29, 0.30) 16

(0.2, 0.2, 0.2, 4.0, 4.0) (2, 2, 2, 2, 2) (0.19, 0.20, 0.19, 3.99, 4.00) 14

(6.0, 6.0, 0.3, 0.3, 0.3) (2, 2, 2, 2, 2) (5.99, 6.00, 0.29, 0.29, 0.30) 14

Output
A vector of the estimated {nl}L

l=1 which are such that
σ(P(λ )) = S

The Iteration
1. Choose a starting value n(0) for the vector of the

unknown coefficients
2. for s = 0,1, · · ·

(a) compute the Jacobian J(n(s)) and the
function f (n(s))

(b) solve the system:
J
(

n(s)
)

ξ (s) =− f
(

n(s)
)

, for ξ (s)

(c) compute the new estimate of the coeffi-
cients vector n(s+1) = ξ (s)+n(s)

(d) stop when ||ξ (s)|| smaller that desired tol-
erance

end loop (ii) (s−loop)

The Jacobian matrix in the above iteration scheme is
computed using a QZ - generalized Schur decompo-
sition. We refer to [7, 9, 10] for more details.

We test the algorithm for the case a of unit disc with
five layers and width 0.2 for each layer. We use a sys-
tem with 20 elements and compute the correspond-
ing matrices (10). Using matlab function eig, we
calculate the highest 8 eigenvalues, which in turn are
the input eigenvalues for the inversion scheme. In all
cases we fix k = 0.5, a = 2 and n0 = 1, in a simi-
lar fashion with the previous method. We note that
for the inverse problem, the position of each layer is
not a priori known. Some examples are presented in
Table 3.
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