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Exceptional Guided Waves
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Abstract

The planar interface of two dissimilar partnering mediums,
at least one of which is anisotropic, can guide an excep-
tional surface wave that propagates in an isolated direction.
In order for this to be achieved, the constitutive parame-
ters of the partnering mediums must satisfy certain con-
straints. Exceptional surface waves have localization char-
acteristics that distinguish them from unexceptional surface
waves: the decay of fields of an exceptional surface wave
in an anisotropic partnering medium exhibits a combined
linear-exponential dependency on distance from the inter-
face, whereas the decay is purely exponential for an unex-
ceptional surface wave. The notion of exceptional surface
waves can be extended to compound waves that are guided
by a pair of parallel planar interfaces.

1 Preliminaries: Voigt waves

We consider a monochromatic electromagnetic field, oscil-
lating with angular frequency ω , in a linear homogeneous
medium. Without loss of generality, the electric and mag-
netic field phasors are expressed as

E(r) = e(z) exp [iq(xcosψ + ysinψ)]

H(r) = h(z) exp [iq(xcosψ + ysinψ)]

}
, (1)

where q is the wavenumber in the xy plane and the propaga-
tion angle ψ ∈ [0,2π). Herein, an exp(−iωt) dependence
on time t is implicit.

By substituting the phasor representations (1) into the
source-free Maxwell curl equations, we arrive at the 4×4
matrix ordinary differential equation [1, 2]

d
dz

[ f (z)] = i[P ] • [ f (z)] , (2)

where the 4×4 matrix [P ] depends on q, ψ , and the consti-
tutive parameters of the medium; and the column 4-vector*

[ f (z)] = [ ûx • e(z), ûy • e(z), ûx • h(z), ûy • h(z) ]T ,
(3)

*The triad of Cartesian unit vectors is written as
{

ûx, ûy, ûz
}

.

with the superscript T signaling the transpose. The compo-
nents ûz • e(z) and ûz • h(z) are algebraically related to [ f (z)]
[2].

Consider possible degeneracies of the matrix [P ]:

(i) In non-degenerate cases [3], the matrix [P ] has four
distinct eigenvalues, each with algebraic multiplicity
1 and geometric multiplicity 1. Non-degenerate [P ] is
the norm for planewave propagation in anistropic and
bianisotropic materials [4].

(ii) In cases of semisimple degeneracy [3], the matrix [P ]
has two distinct eigenvalues, each with algebraic mul-
tiplicity 2 and geometric multiplicity 2. Semisimple
degeneracy is exhibited for every ψ ∈ [0,2π) by the
matrix [P ] formulated for free space as well as for any
isotropic dielectric-magnetic material [4].

(iii) In cases of non-semisimple degeneracy [3], the matrix
[P ] has two distinct eigenvalues, each with algebraic
multiplicity 2 and geometric multiplicity 1. A plane
wave arising from a non-semisimple degeneracy of [P ]
is called a Voigt wave; such waves were experimen-
tally observed by Voigt in 1902 [5] and theoretically
explained by Pancharatnam in 1958 [6]. Certain bi-
axial absorbing dielectric mediums, for example, sup-
port the propagation of Voigt waves for isolated val-
ues of ψ , depending on the orientation of the x and
y axes [7, 8, 9]. Voigt waves are represented in band
diagrams as exceptional points [10, 11]. These excep-
tional points can arise only if the medium of propaga-
tion is either dissipative or active [12, 13].

A Voigt wave is an exceptional plane wave. The notion of
exceptional waves can be extended to guided waves, such
as surface waves and compound waves, as we describe next.

2 Surface waves

A surface wave is guided by the planar interface of two dis-
similar mediums [14]. To be specific, suppose that medium
A occupies the half-space z > 0 while medium B occupies
the half-space z< 0. The phasor representation (1) holds for



all z ∈ (−∞,∞) with q being the surface wavenumber and
the direction of surface-wave propagation relative to the x
axis in the xy plane being prescribed by ψ . The source-free
Maxwell curl equations now deliver the 4×4 matrix ordi-
nary differential equations [1, 2]

d
dz

[ f (z)] =

{
i[P

A
] • [ f (z)] , z > 0

i[P
B
] • [ f (z)] , z < 0

. (4)

The electric and magnetic fields of surface-wave solutions
to Eqs. (4) must decay as z→±∞ and satisfy the standard
boundary condition

[ f (0−)] = [ f (0+)]. (5)

For a certain value of ψ , suppose that a surface wave is ex-
cited. Let us consider possible degeneracies of the matrixes
[P

A
] and [P

B
]:

(i) [P
A
] does not have a non-semisimply degenerate

eigenvalue for decay as z → ∞ nor does [P
B
] have

a non-semisimply degenerate eigenvalue for decay as
z→−∞; in this case the surface wave is unexceptional
[14].

(ii) [P
A
] has a non-semisimply degenerate eigenvalue for

decay as z→ ∞, but [P
B
] has no non-semisimply de-

generate eigenvalues for decay as z→−∞; in this case
the surface wave is exceptional [15].

(iii) [P
A
] has no non-semisimply degenerate eigenvalues

for decay as z→ ∞, but [P
B
] has a non-semisimply

degenerate eigenvalue for decay as z→ −∞; in this
case the surface wave is exceptional [15].

(iv) [P
A
] has a non-semisimply degenerate eigenvalue for

decay as z→ ∞ and [P
B
] has a non-semisimply de-

generate eigenvalue for decay as z→−∞; in this case
the surface wave is doubly exceptional [16].

Exceptional surface waves may be distinguished from un-
exceptional surface waves by their localization character-
istics: the decay of fields of an exceptional surface wave
in an anisotropic partnering medium exhibits a combined
linear-exponential dependency on distance from the inter-
face, whereas the decay is purely exponential for an unex-
ceptional surface wave.

A variety of different types of exceptional surface wave [15]
have been reported on recently:

(a) If both partnering mediums are dielectric materials,
with one being anisotropic, then exceptional surface
waves known as Dyakonov–Voigt surface waves can
exist. These exceptional waves can arise if the part-
nering materials are nondissipative [17] or dissipative
[18]. For example, while the planar interface of an

isotropic dielectric material and a uniaxial dielectric
material supports one exceptional surface wave for
each quadrant of the interface plane, the planar in-
terface of an isotropic dielectric material and a biax-
ial dielectric material supports two exceptional surface
waves for each quadrant of the interface plane [19].
Doubly exceptional Dyakonov–Voigt surface waves
have been reported on for the planar interface of a bi-
axial dielectric material and a uniaxial dielectric mate-
rial [16].

(b) If one of the partnering mediums is a metal and
the other is a dielectric material, with at least one
of them being anisotropic, then exceptional sur-
face waves known as surface–plasmon–polariton–
Voigt waves can exist [20].

A representative numerical example is illus-
trated in Fig. 1, wherein the real and imagi-
nary parts of the surface wavenumber q (rela-
tive to the free-space wavenumber k0) is plotted
against ψ for the instance where material A
is a uniaxial dielectric material with relative
permittivity dyadic (6.4962+0.09830i) ûx ûx +
(2.2+0.5i)

(
ûy ûy + ûz ûz

)
; material B is an isotropic

metal with relative permittivity −16.07 + 0.44i; and
the free-space wavelength is 633 nm. The unexcep-
tional surface waves (i.e., surface–plasmon–polariton
waves) are represented by the two curves in Fig. 1; and
the solitary exceptional surface wave (i.e., a surface–
plasmon–polariton–Voigt wave) is identified by the
black star at ψ = 35◦ (with q = (1.8222+0.2045i)k0).
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Figure 1. Re{q/k0} and Im{q/k0} plotted versus ψ ∈
(0,90)◦ for unexceptional (curves) and exceptional (black
stars) surface–plasmon–polariton waves. See text for pa-
rameter values.

(c) The notion of exceptional surface waves extends to
planar interfaces involving nonhomogeneous materi-



als. For example, if one of the partnering mediums
is a homogeneous uniaxial dielectric material and the
other is an isotropic dielectric material that is peri-
odically nonhomogeneous in the direction normal to
interface, then exceptional surface waves known as
Dyakonov–Tamm–Voigt surface waves can exist [21].
Indeed, multiple such exceptional waves can exist for
each quadrant of the interface plane.

3 Compound waves

Let us now turn from the two-medium structure that guides
surface waves to the three-medium structure that guides
compound waves. For example, suppose that medium
A occupies the space z > D, medium B occupies space
0 < z < D, and medium C occupies the space z < 0. For
definiteness, let medium B be an isotropic metal film of
thickness D, while mediums A and C are dielectric ma-
terials with at least one them being anisotropic. If D is
sufficiently large (i.e., large compared to the skin depth of
the metal), the two metal/dielectric interfaces will not in-
teract and each could guide an surface–plasmon–polariton
wave on its own. But, when D is sufficiently small, the two
metal/dielectric interfaces can interact to engender com-
pound plasmon-polariton (CPP) waves.

The phasor representation (1) again holds for all z ∈
(−∞,∞) with q now being the compound wavenumber and
the direction of compound-wave propagation relative to the
x axis in the xy plane being prescribed by ψ . The source-
free Maxwell curl equations now deliver the 4×4 matrix
ordinary differential equations [1, 2]

d
dz

[ f (z)] =


i[P

A
] • [ f (z)] , z > D

i[P
B
] • [ f (z)] , 0 < z < D

i[P
C
] • [ f (z)] , z < 0

. (6)

The electric and magnetic fields of compound-wave solu-
tions to Eqs. (6) must decay as z → ±∞ and satisfy the
boundary conditions

[ f (0−)] = [ f (0+)][
f (D−)

]
=
[

f (D+)
] } . (7)

For a certain value of ψ , suppose that a CPP wave is ex-
cited. Let us consider possible degeneracies of the matrixes
[P

A
] and [P

C
]:

(i) [P
A
] does not have a non-semisimply degenerate

eigenvalue for decay as z → ∞ nor does [P
C
] have

a non-semisimply degenerate eigenvalue for decay as
z→−∞; in this case the CPP wave is unexceptional
[14].

(ii) [P
A
] has a non-semisimply degenerate eigenvalue for

decay as z→ ∞, but [P
C
] has no non-semisimply de-

generate eigenvalues for decay as z→−∞; in this case
CPP wave is exceptional [22].

(iii) [P
A
] has no non-semisimply degenerate eigenvalues

for decay as z→ ∞, but [P
C
] has a non-semisimply

degenerate eigenvalue for decay as z→ −∞; in this
case the CPP wave is exceptional [22].

(iv) [P
A
] has a non-semisimply degenerate eigenvalue for

decay as z→ ∞ and [P
C
] has a non-semisimply de-

generate eigenvalue for decay as z→−∞; in this case
the CPP wave is doubly exceptional.

Exceptional CPP waves have been reported on recently for
the case of a metal film embedded in a uniaxial dielectric
material (i.e., in this case mediums A and C are the same)
[23]: up to two exceptional CPP waves were found for each
quadrant of the interface plane. And more general instances
of exceptional CPP waves have been reported on too [22].
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Figure 2. Re{q/k0} and Im{q/k0} plotted versus ψ ∈
(0,90)◦ for unexceptional (curves) and exceptional (black
stars) CPP waves. See text for parameter values.

A representative numerical example is illustrated in Fig. 2,
wherein the real and imaginary parts of the compound
wavenumber q (relative to the free-space wavenumber k0)
is plotted against ψ for the instance where material A is a
uniaxial dielectric material with relative permittivity dyadic
(3.1635+3.5687i) ûx ûx + (2.2+0.2i)

(
ûy ûy + ûz ûz

)
; ma-

terial B is an isotropic metal with relative permittivity
−16.07+ 0.44i; material C is an isotropic dielectric ma-
terial with relative permittivity 6.26; D = 15 nm; and the
free-space wavelength is 633 nm. The unexceptional CPP
waves are represented by the three curves in Fig. 2; and
the two exceptional CPP waves are identified by the black
stars at ψ = 29.1868◦ (with q = (1.7007+0.0771i)k0) and
ψ = 71.2253◦ with (q = (4.6133+0.2093i)k0).
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