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Abstract

The planar interface of two dissimilar partnering mediums,
at least one of which is anisotropic, can guide an excep-
tional surface wave that propagates in an isolated direction.
In order for this to be achieved, the constitutive parame-
ters of the partnering mediums must satisfy certain con-
straints. Exceptional surface waves have localization char-
acteristics that distinguish them from unexceptional surface
waves: the decay of fields of an exceptional surface wave
in an anisotropic partnering medium exhibits a combined
linear-exponential dependency on distance from the inter-
face, whereas the decay is purely exponential for an unex-
ceptional surface wave. The notion of exceptional surface
waves can be extended to compound waves that are guided
by a pair of parallel planar interfaces.

1 Preliminaries: Voigt waves

We consider a monochromatic electromagnetic field, oscil-
lating with angular frequency ®, in a linear homogeneous
medium. Without loss of generality, the electric and mag-
netic field phasors are expressed as

E(r) = e(z) explig(xcos y +ysin y)] } n
(r) = h(z) exp [ig (xcos y +ysiny)] [’
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where ¢ is the wavenumber in the xy plane and the propaga-
tion angle y € [0,27). Herein, an exp(—icot) dependence
on time ¢ is implicit.

By substituting the phasor representations (1) into the
source-free Maxwell curl equations, we arrive at the 4x4
matrix ordinary differential equation [1, 2]
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where the 4 x4 matrix [P] depends on ¢, y, and the consti-
tutive parameters of the medium; and the column 4-vector*

[f@]=1] & ve@@), @ye2), @cch(z), @,-h() ],

“The triad of Cartesian unit vectors is written as { iy, iy, QZ}.

with the superscript T signaling the transpose. The compo-
nents il, + e(z) and il, + h(z) are algebraically related to [f(z)]
[2].

Consider possible degeneracies of the matrix [P]:

(i) In non-degenerate cases [3], the matrix [P] has four
distinct eigenvalues, each with algebraic multiplicity
1 and geometric multiplicity 1. Non-degenerate [P] is
the norm for planewave propagation in anistropic and
bianisotropic materials [4].

(ii) In cases of semisimple degeneracy [3], the matrix [P]
has two distinct eigenvalues, each with algebraic mul-
tiplicity 2 and geometric multiplicity 2. Semisimple
degeneracy is exhibited for every y € [0,27) by the
matrix [ P] formulated for free space as well as for any

isotropic dielectric-magnetic material [4].

(iii) In cases of non-semisimple degeneracy [3], the matrix
[P] has two distinct eigenvalues, each with algebraic
multiplicity 2 and geometric multiplicity 1. A plane
wave arising from a non-semisimple degeneracy of [ P]
is called a Voigt wave; such waves were experime?l—
tally observed by Voigt in 1902 [5] and theoretically
explained by Pancharatnam in 1958 [6]. Certain bi-
axial absorbing dielectric mediums, for example, sup-
port the propagation of Voigt waves for isolated val-
ues of v, depending on the orientation of the x and
y axes [7, 8, 9]. Voigt waves are represented in band
diagrams as exceptional points [10, 11]. These excep-
tional points can arise only if the medium of propaga-
tion is either dissipative or active [12, 13].

A Voigt wave is an exceptional plane wave. The notion of
exceptional waves can be extended to guided waves, such
as surface waves and compound waves, as we describe next.

2 Surface waves

A surface wave is guided by the planar interface of two dis-
similar mediums [14]. To be specific, suppose that medium
&/ occupies the half-space z > 0 while medium % occupies
the half-space z < 0. The phasor representation (1) holds for



all z € (—oo,00) with g being the surface wavenumber and
the direction of surface-wave propagation relative to the x
axis in the xy plane being prescribed by y. The source-free
Maxwell curl equations now deliver the 4 x4 matrix ordi-
nary differential equations [1, 2]

d { 2,1+ 1fQ)]. >0
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The electric and magnetic fields of surface-wave solutions
to Egs. (4) must decay as z — £oo and satisfy the standard
boundary condition

[f()]= <o’ @

dz't

[£(07)]=[£(07)]. @)

For a certain value of y, suppose that a surface wave is ex-
cited. Let us consider possible degeneracies of the matrixes

[P land [P ]:

(6))] [£ Q{] does not have a non-semisimply degenerate
eigenvalue for decay as z — o nor does [P ] have
a non-semisimply degenerate eigenvalue for decay as
7 — —oo; in this case the surface wave is unexceptional
[14].

(ii) [g Q{] has a non-semisimply degenerate eigenvalue for
decay as z — oo, but [P, | has no non-semisimply de-
generate eigenvalues for decay as z — —oo; in this case
the surface wave is exceptional [15].

(iii) [P ﬂ] has no non-semisimply degenerate eigenvalues

for decay as z — oo, but [P ] has a non-semisimply

degenerate eigenvalue for decay as z — —oo; in this

case the surface wave is exceptional [15].

(iv) [P Q{] has a non-semisimply degenerate eigenvalue for
decay as z — oo and [P ] has a non-semisimply de-
generate eigenvalue for decay as z — —oo; in this case

the surface wave is doubly exceptional [16].

Exceptional surface waves may be distinguished from un-
exceptional surface waves by their localization character-
istics: the decay of fields of an exceptional surface wave
in an anisotropic partnering medium exhibits a combined
linear-exponential dependency on distance from the inter-
face, whereas the decay is purely exponential for an unex-
ceptional surface wave.

A variety of different types of exceptional surface wave [15]
have been reported on recently:

(a) If both partnering mediums are dielectric materials,
with one being anisotropic, then exceptional surface
waves known as Dyakonov—Voigt surface waves can
exist. These exceptional waves can arise if the part-
nering materials are nondissipative [17] or dissipative
[18]. For example, while the planar interface of an

isotropic dielectric material and a uniaxial dielectric
material supports one exceptional surface wave for
each quadrant of the interface plane, the planar in-
terface of an isotropic dielectric material and a biax-
ial dielectric material supports two exceptional surface
waves for each quadrant of the interface plane [19].
Doubly exceptional Dyakonov—Voigt surface waves
have been reported on for the planar interface of a bi-
axial dielectric material and a uniaxial dielectric mate-
rial [16].

(b) If one of the partnering mediums is a metal and
the other is a dielectric material, with at least one
of them being anisotropic, then exceptional sur-
face waves known as surface—plasmon—polariton—
Voigt waves can exist [20].

A representative numerical example 1is illus-
trated in Fig. 1, wherein the real and imagi-
nary parts of the surface wavenumber ¢ (rela-
tive to the free-space wavenumber k) is plotted
against W for the instance where material &/
is a uniaxial dielectric material with relative
permittivity ~ dyadic  (6.4962+0.09830¢) &, it, +
(2.2+0.5i) (@y@y —I—QZQZ); material % is an isotropic
metal with relative permittivity —16.07 4 0.444; and
the free-space wavelength is 633 nm. The unexcep-
tional surface waves (i.e., surface—plasmon—polariton
waves) are represented by the two curves in Fig. 1; and
the solitary exceptional surface wave (i.e., a surface—
plasmon—polariton—Voigt wave) is identified by the
black star at y = 35° (with g = (1.8222 4 0.2045i)k).
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Figure 1. Re{q/k,} and Im{q/k,} plotted versus y €
(0,90)° for unexceptional (curves) and exceptional (black

stars) surface—plasmon—polariton waves. See text for pa-
rameter values.

(c) The notion of exceptional surface waves extends to
planar interfaces involving nonhomogeneous materi-



als. For example, if one of the partnering mediums
is a homogeneous uniaxial dielectric material and the
other is an isotropic dielectric material that is peri-
odically nonhomogeneous in the direction normal to
interface, then exceptional surface waves known as
Dyakonov-Tamm-—Voigt surface waves can exist [21].
Indeed, multiple such exceptional waves can exist for
each quadrant of the interface plane.

3 Compound waves

Let us now turn from the two-medium structure that guides
surface waves to the three-medium structure that guides
compound waves. For example, suppose that medium
&/ occupies the space z > D, medium % occupies space
0 < z < D, and medium % occupies the space z < 0. For
definiteness, let medium 2 be an isotropic metal film of
thickness D, while mediums .7 and € are dielectric ma-
terials with at least one them being anisotropic. If D is
sufficiently large (i.e., large compared to the skin depth of
the metal), the two metal/dielectric interfaces will not in-
teract and each could guide an surface—plasmon—polariton
wave on its own. But, when D is sufficiently small, the two
metal/dielectric interfaces can interact to engender com-
pound plasmon-polariton (CPP) waves.

The phasor representation (1) again holds for all z €
(—o0,00) with ¢ now being the compound wavenumber and
the direction of compound-wave propagation relative to the
x axis in the xy plane being prescribed by y. The source-
free Maxwell curl equations now deliver the 4 x4 matrix
ordinary differential equations [1, 2]

p ilP1-1f()], z>D
;Z[i(Z)]: i[P,1-[f(x)], 0<z<D . (6)
iP 1-[f(2)] 7<0

The electric and magnetic fields of compound-wave solu-
tions to Egs. (6) must decay as z — +eoo and satisfy the
boundary conditions

[£(07)] =[£(0")]
= = . )
[f(D7)] =[£(D")] }

For a certain value of y, suppose that a CPP wave is ex-
cited. Let us consider possible degeneracies of the matrixes
[P ,]and [P_]:

@ [P ] does not have a non-semisimply degenerate
elgenvalue for decay as z — oo nor does [P ] have
a non-semisimply degenerate eigenvalue for decay as
z — —oo; in this case the CPP wave is unexceptional
[14].

(ii) [ ] has a non-semisimply degenerate eigenvalue for
decay as z — oo, but [P | has no non-semisimply de-
generate eigenvalues for decay as z — —oo; in this case
CPP wave is exceptional [22].

(iii) [P ] has no non-semisimply degenerate eigenvalues
for decay as z — o, but [P, ] has a non-semisimply
degenerate eigenvalue for decay as z — —oo; in this
case the CPP wave is exceptional [22].

@v) [P J?/] has a non-semisimply degenerate eigenvalue for
decay as z — o0 and [P, ] has a non-semisimply de-
generate eigenvalue for decay as z — —oo; in this case

the CPP wave is doubly exceptional.

Exceptional CPP waves have been reported on recently for
the case of a metal film embedded in a uniaxial dielectric
material (i.e., in this case mediums .« and % are the same)
[23]: up to two exceptional CPP waves were found for each
quadrant of the interface plane. And more general instances
of exceptional CPP waves have been reported on too [22].
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Figure 2. Re{q/ko} and Im{q/k,} plotted versus y €
(0,90)° for unexceptional (curves) and exceptional (black
stars) CPP waves. See text for parameter values.

A representative numerical example is illustrated in Fig. 2,
wherein the real and imaginary parts of the compound
wavenumber ¢ (relative to the free-space wavenumber k)
is plotted against y for the instance where material <7 is a
uniaxial dielectric material with relative permittivity dyadic
(3.1635+3.5687i) it i, + (2.2+0.2i) (i, i, + i1, &,); ma-
terial # is an 1sotrop1c metal with relative permittivity
—16.07 + 0.44i; material € is an isotropic dielectric ma-
terial with relative permittivity 6.26; D = 15 nm; and the
free-space wavelength is 633 nm. The unexceptional CPP
waves are represented by the three curves in Fig. 2; and
the two exceptional CPP waves are identified by the black
stars at y = 29.1868° (with ¢ = (1.7007 4+ 0.0771i)k,) and
v = 71.2253° with (g = (4.6133 +0.2093i)k).
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