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It is well known that the reflection of a circularly (or elliptically) polarized wave from a planar perfect electric
conductor (PEC) surface changes the handedness of the polarization of the incident wave. Likewise happens
for the reflection from a perfect magnetic conductor (PMC) boundary. For a linearly polarized incident wave,
the reflected wave retains its linear character (in other words, it is the eigenpolarization) but the character of the
reflection itself is dual in these two cases: electric field reflection coefficient from PEC is the same as the magnetic
field reflection coefficient from PMC. As has been generalized [1], the so-called perfect electromagnetic conductor
(PEMC) is a medium and surface which contains PEC and PMC as special cases. It has the very peculiar property
that the reflection of a linearly polarized incident field results in a rotated linear polarization, and hence the linear
polarization is no longer an eigenpolarization. And even more, the boundary is non-reciprocal. For a certain PEMC
parameter [1], the reflection is totally cross-polarized.

Electromagnetic boundary conditions are relations of the tangential and/or normal components of the electric and
magnetic fields (E,H) or flux densities (D,B) at the boundary of the domain of interest. Combining both the
normal and tangential components leads to a rather general class on boundary conditions [2]; in this talk, we will
focus on a particular subclass of boundaries; so-called impedance boundaries for which the boundary condition
involves only tangential electric and magnetic fields

Et = Zs · (n×Ht) (1)

This is a dyadic relation between the tangential electric and magnetic fields at the boundary: Et = −n× (n×E)
and Ht = −n× (n×H), with n as the unit normal of the boundary. (Note that despite the apparent simplicity of
this impedance equation, due to the dyadic nature of Zs, it spans still a rich domain.)

To appreciate the power of anisotropic metaboundaries to transform the polarization of wave in reflection, con-
sider the perfect co-polarization reflector presented in [3]. With its metamaterial realization, it shows its perfor-
mance over a wide angular range. For this co-polarization-boundary case, the surface impedance dyadic in (1) is
anisotropic:

Zs =−jη0 sinh(u) It + jη0 cosh(u)L (2)

where u is a real parameter, and the two-dimensional dyadics are It = vv+ww and L= vw+wv. (The free-space
impedance η0 =

√
µ0/ε0 gives the units for the surface impedance.) The vectors v and w are tangential unit vectors

such that (v,w,n) form a right-handed base. Contrasting to PEMC (which is both isotropic and non-reciprocal),
this boundary (2) is an-isotropic and reciprocal. In the talk, the particular properties of this boundary and others
will be treated from the matched waves [2] point of view.
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