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Abstract

The problems are considered of the propagation of sur-
face TE-polarized electromagnetic waves in the Goubau
line (perfectly conducting cylinder covered with a concen-
tric dielectric layer) and a shielded two-layer dielectric wa-
veguide filled with an inhomogeneous medium. Numerical
results are presented of the comparison of the wave spectra.

1 Introduction

The wave propagation in shielded (closed) waveguide struc-
tures with inhomogeneous filling has been an object of in-
tensive studies since the classical work [1] continued in
[2, 3] an other studies. The methods appicable for shielded
and open waveguides have been developed in [4, 5, 6] using
rigorous mathematical approaches, in particular spectral
theory of differential and integral operators and operator-
valued funstions [7, 8, 9] which was partially reflected in
recent monographs [11, 10] on electromagnetic field the-
ory, to name the few.

As far as investigations of spectral properties of such pro-
blems is concerned, the methods of nonselfadjoint operator
theory [5] turns out to be natural and efficient. After the ini-
tial boundary value problem (BVP) has been reduced to the
analysis of a certain operator-value function, in many cases
operator pencil [5, 12], one can use the apparatus of functi-
onal analysis to study the BVP spectral properties (see [12]-
[14]). In [12]-[15], a general theory of the propagation of
normal waves in closed waveguides was constructed.

Open waveguide structures have been studied by many aut-
hors [4, 5, 7, 8, 9] and in [12]-[14] using the methods of
spectral theory of nonselfadjoint operators. However, for
open (non-shielded) structures, a sufficiently complete the-
ory of wave propagation has not been constructed. In this
paper we perform a comparative numerical study of the
surface TE-polarized wave propagation in two basic types
of cylindrical waveguides with inhomogeneous filling ad-
dressing the case when permittivity of dielectric media is a
function of the radial polar coordinate. Note that we con-
sider only the waves decaying with respect to the distance
from the waveguide external boundary, namely, the surface
waves (imposing the appropriate conditions at infinity). Ot-
her types of waves are not considered.

2 Open inhomogeneous waveguide. State-
ment of the problem

Consider three-dimensional space R3 equipped with cylin-
drical coordinate system Oρϕz and filled with an isotro-
pic source-free medium having the permittivity ε = ε0εc ≡
const , where ε0 is the permittivity vacuum. An open single-
layer cylindrical metal-dielectric waveguide, the Goubau
line (GL), with circular cross-section

Σ := {(ρ,ϕ,z) : r0 6 ρ 6 r,0 6 ϕ 6 2π}

with a generatrix parallel to the Oz axis is placed in R3.

Figure 1. Cross-section of a waveguide Σ.

The cross-section of the waveguide by a plane perpendicu-
lar to its axis consists of a ring with internal and external
radii r0 and r. The circles ρ = r0 and ρ = r are the projecti-
ons of the surfaces of a perfectly conducting infinitely thin
screen and interface of the dielectrics, respectively.

The problem of the electromagnetic TE-polarized wave
propagation in this open metal-dielectric waveguide con-
sists in finding nontrivial solutions of the homogeneous sy-
stem of Maxwell’s equations in the form of traveling waves
[16, ?], i.e. with the dependence eiγz on the coordinate z
along which the structure is regular:{

rotH =−iωεE,
rotE = iωH,

(1)

E =
(
0,Eϕ(ρ)eϕ ,0

)
eiγz, H =

(
Hρ(ρ)eρ ,0,Hz(ρ)ez

)
eiγz;



in addition, the following conditions must be satisfied:
boundedness of the field energy in any finite volume of the
waveguide, vanishing of the tangential electric field com-
ponents on the surface of a perfect conductor

Eϕ

∣∣
ρ=r0

= 0; (2)

continuity of the tangential components at the interface

[Eϕ ]
∣∣
ρ=r = 0, [Hz]|ρ=r = 0, (3)

and the radiation condition at infinity which will be formu-
lated and discussed later.

We assume that permittivity in the entire space has the form
ε = ε̃ε0, where

ε̃ =

{
εr(ρ), r0 6 ρ 6 r,
εc, ρ > r,

(4)

where εc is a real positive constant, and that εr(ρ) is a twice
continuously differentiable function on the interval [r0,r],
i.e. ε(ρ) ∈C2[r0,r].

Denoting u(ρ) := Eϕ(ρ), and setting k2
0 := ω2µ0ε0, we

obtain (
ρ
−1(ρu)′

)′
+(k2

0 ε̃− γ
2)u = 0, (5)

where the derivative denotes differentiation with respect to
ρ and u(ρ,γ) is a real function.

For ρ > r, we have ε̃ = εc, then from (7) we obtain the
Bessel equation

u′′+ρ
−1u′−ρ

−2u−κ
2u = 0, (6)

where κ2 = γ− k2
0εc. The solution of (8) has the form

u = C̃I1(κρ)+CK1(κρ),ρ > r,

where C and C̃ are constants. It is known [17] that I1(ρ)
tends to infinity as ρ→+∞, and K1(ρ) tends to zero as ρ→
+∞. Taking into account these properties and the condition
at infinity, we obtain that C̃ = 0 and

u =CK1(κρ),ρ > r. (7)

In the waveguide cladding r0 ≤ ρ ≤ r, we have ε̃ = εr(r).
Then, from (7) we obtain the following equation:

u′′+ρ
−1u′−ρ

−2u+(k2
0εr− γ

2)u = 0. (8)

The tangential electromagnetic field components are conti-
nuous at the interface between the media. From the con-
tinuity condition we obtain

[u]|
ρ=r = 0, [u′]

∣∣
ρ=r = 0, (9)

Finally, since the tangential components of the electric field
vanish on the surface of a perfect conductor, we get the
boundary condition for u(ρ)

u|
ρ=r0

= 0, (10)

Definition 1. Problem P0: find γ ∈ R such that there exist
nontrivial solutions u to differential equation (10) satisfying
conditions (11) and (12).

3 Closed inhomogeneous waveguide. Formu-
lation of the problem

A closed (shielded) two-layer cylindrical metal-dielectric
waveguide

Π := {(ρ,ϕ,z) : r0 6 ρ < r,0 6 ϕ < 2π}∪
{(ρ,ϕ,z) : r0 6 ρ 6 R,0 6 ϕ < 2π}

with a generatrix parallel to the Oz axis and a circular cross-
section is placed in R3.

Figure 2. Cross-section of a waveguide Π.

The cross-section of the waveguide by a plane perpendicu-
lar to its axis consists of two rings with internal radii r0 and
r and and external radii r and R, respectively. The circles
ρ = r0 and ρ = R are the projections of the surfaces of a
perfectly conducting infinitely thin screen and ρ = r of the
interface of dielectrics. Denote by4R=R−r the thickness
of the external layer.

The problem of the TE-polarized wave propagation in the
waveguide consists in finding nontrivial solutions of the ho-
mogeneous system of Maxwell’s equations in the form of a
traveling wave having the dependence eiγz on coordinate z:{

rotH =−iωεE,
rotE = iωH,

(11)

E =
(
0,Eϕ(ρ)eϕ ,0

)
eiγz, H =

(
Hρ(ρ)eρ ,0,Hz(ρ)ez

)
eiγz;

the following conditions must be satisfied: boundedness of
the field energy in any finite volume of the waveguide,

Eϕ

∣∣
ρ=r0

= 0, and Eϕ

∣∣
ρ=R = 0; (12)

and the continuity of tangential components of fields at the
interface

[Eϕ ]
∣∣
ρ=r = 0, [Hz]|ρ=r = 0, (13)

We assume that permittivity in the entire space has the form
ε = ε̃ε0, where

ε̃ =

{
εr(ρ), r0 6 ρ 6 r,
εc, r 6 ρ 6 R,

(14)



Denoting v(ρ) := Eϕ(ρ), we obtain(
ρ
−1(ρv)′

)′
+(k2

0 ε̃− γ
2)v = 0, (15)

In the inner layer of the waveguide r 6 ρ 6 R, we have
ε̃ = εc, then from (19) we obtain the Bessel equation

v′′+ρ
−1v′−ρ

−2v−κ
2v = 0, (16)

The solution of (20) has the form

v = C̃I1(κρ)+CK1(κρ),r 6 ρ 6 R,

where C and C̃ are constants. Taking into account condition
(16) on the external boundary ρ = R, we get

v = C̃(I1(κR)K1(κρ)−K1(κR)I1(κρ)),r 6 ρ 6 R. (17)

In the waveguide cladding r0 ≤ ρ ≤ r we have ε̃ = εr(r).
Then, from (7) we obtain the following equation:

v′′+ρ
−1v′ = ρ

−2v+(k2
0εr− γ

2)v = 0. (18)

From the condition of continuity of the tangential compo-
nents, we obtain

[v]|
ρ=r = 0, [v′]

∣∣
ρ=r = 0, (19)

Definition 2. Problem PC: find γ ∈ R such that there exist
nontrivial solutions v to differential equation (22) satisfying
conditions (15) and (23).

4 Numerical method

Consider the Cauchy problem for the equation

w′ =−ρ
−1w′+ρ

−2w− (k2
0εr− γ

2)v = 0, (20)

with initial conditions

w(r0) = 0,w′(r0) := A (21)

where A is a given constant (field amplitude), different from
zero.

Remark 1. Note that for linear media, the propagation con-
stants (eigenvalues) do not depend on the field amplitude at
one of the waveguide boundaries.

We assume that a solution to the Cauchy problem exists, is
unique, and is defined on the whole interval [r0,r] for given
values of r0,r and continuously depends on the parameter
γ > ω

√
εc.

From the conjugation condition on the second boundary r,
we obtain the equation

Φ(γ)≡ φ1(γ)w(r−0)+φ2(γ)w′(r−0), (22)

where φ(γ) = κK0(κr) + r−1K1(κr),φ2(γ) = K1(κr), for
Problem PO; and

φ(γ) = κ(K0(κr)I1(κR)+ I0(κr)K1(κR))+

+r−1(K0(κr)I1(κR)− I0(κr)K1(κR)),

φ2(γ) = (K1(κr)I1(κR)− I1(κr)K1(κR)),

for Problem PC.

From formula (26) it follows that the value of Φ(γ) is ex-
pressed only through the values of the solution to the Cau-
chy problem w(r) and w′(r). Assume that γ = γ̃ is such that
Φ(γ) = 0; then it is clear that γ̃ is a solution (a propagation
constant).

Statement 1. Let the segment [γ, γ̄] be such that
Φ(γ)Φ(γ̄) < 0. Then, there exists at least one propagation
constant (one eigenvalue) [γ̃ ∈ γ, γ̄].

The set of solutions to the equation Φ(γ)= 0 determines the
spectrum of eigenwaves of the propagating TE-polarized
waves. We will call Φ(γ) = 0 the dispersion equation of
the problem. By solving numerically the equation Φ(γ) = 0
(for different values of frequency), it is possible to construct
graphs of the dependence (dispersion curves) of eigenva-
lues γ on frequency f . Note that requency f is related to
cyclic frequency ω by the relation f = 2piω .

Figures 3 and 4 show the calculated solutions to the dis-
persion equation for Problems P0 and PC, respectively.The
gray lines mark the domain defined by the condition k2

0ε <
γ2 < k2

0 max
[r0,r]

(εr), where the problems under consideration

have solutions. The values of parameters used in calcula-
tions are indicated in the captions to the graphs. Figures 3
and 4 show that the spectra of single-layer closed and open
waveguides (with the same parameters), as expected, are
different. What is more, for the chosen frequency ω = 5.5,
we have different number of eigenvalues.

Figure 3. Fig. 3: Problem P0: dispersion curves. Parameter
values: A = 1,r0 = 0.25,r = 1.0,εc = 1,εr = 9+ρ .

Let us call how the number and magnitude of the eigenva-
lues of Problem PC change with the increasing thickness of
the outer layer4R, in comparison with eigenvalues of Pro-
blem P0. We see (Fig. 5) that already when the outer layer



Figure 4. Fig. 4: Problem PC: dispersion curves. Parameter
values: A= 1,r0 = 0.25,r = 1.0,4R= 0,εc = 1,εr = 9+ρ .

Figure 5. Fig. 5: Comparison of the spectra of Problems
PO (blue lines) and PC (red lines). Parameter values: A =
1,r0 = 0.25,r = 1.0,εc = 1,εr = 9+ρ .

thickness 4R > 0.5, the number and magnitude of the ei-
genvalues of Problems PO (blue curves) and PC (red curves)
coincide.

We can draw the following important conclusion: the
spectra of Problems PO and PC coincide for sufficient thick
external layers.

5 Conclusion

A comparison of the properties of the surface TE-polarized
electromagnetic waves in GL and a two-layer shielded die-
lectric waveguide filled with an inhomogeneous medium is
performed as a result of series of calculations completed
using a specially constructed numerical method. The obtai-
ned numerical results of the comparison confirm several im-
portant properties of the TE-wave spectra which have not
been reported in earlier studies.
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