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Abstract

This paper presents a novel beam-forming algorithm and
its application to phase-only nulling. The proposed algo-
rithm aims to achieve the interference nulling only by mod-
ulate phases so that we can reduce cost when setting phase
shifter. This algorithm is based on the Kronecker decom-
position. We can decompose the steering vector and weight
vector into the form of Kronecker product because of their
Vandermonde structures. With Kronecker decomposition,
the weight vector design can be transformed into the design
for several sub-vectors. According to the theory of beam
forming and interference nulling, we are able to get ana-
lytical solutions when designing the desired weight vector
and its complexity is low. Simulation results are provided
to demonstrate the performance of the proposed algorithm.

1 Introduction

Array antenna has been widely used in plenty of fields such
as radar detection, navigation and wireless communication
etc [1–3]. In radar system, it is quite necessary to design the
array pattern, which is of significant importance to enhance
system performance no matter in interference suppression
or other aspects.

For the sake of setting nulls in the direction of interfer-
ences, the traditional method is usually realized by com-
plex weighting. It is known that designing the weight vec-
tor for the elements is quite important to achieve an ideal
array pattern [4]. It is necessary not only to form null in
the interference direction, but also to set the mainlobe con-
straint. However, it is complex to modulate the amplitude
and phase simultaneously. Besides, it will also lead to the
loss of power, thus affecting the performance of detection.
To simplify the beamforming network and reduce the cost,
phase-only technique is also preferred [5–7]. Phase-only al-
gorithm is mainly used in the control of nulls in beam pat-
tern forming. In addition, the phase-only structure allows
to use the single power-divider network, which is more ef-
ficient than those conventional structures that modulate the
amplitude of excitation dynamically [8]. Comparing with
other beamforming algorithm, phase-only algorithm does
not need to modulate the amplitude. We can control the
beam only by setting phase shifters.

Figure 1. Uniform linear array.

In this paper, a phase-only nulling algorithm via Kronecker
decomposition [9] is proposed. We design the weight vec-
tor by using the sub-vectors, then form the desired beam.
The proposed algorithm has a low computational complex-
ity with analytical solutions.

2 Preliminaries

2.1 Array Model

We consider a one-dimensional N-element uniform linear
array as the array model, as shown in Fig.1. The corre-
sponding steering vector can be written as

a(θ) = [1,e− jϕ , · · · ,e− j(N−1)ϕ ]T ∈ CN (1)

where ϕ = 2πdsinθ/λ stands for the spatial phase, (·)T

stands for the transpose operator, j =
√
−1 denotes the

imaginary unit, and d denotes the element spacing.

Given the array weight vector w ∈ CN , the beam pattern of
the spatial filtering can be expressed as

f (θ) = wHa(θ) (2)

where (·)H denotes the Hermitian transpose. Obviously, we
can obtain an ideal beam pattern by designing an appropri-
ate weight vector w.



2.2 Phase-Only Nulling

In order to suppress the L interferences from some spe-
cific angles, interference nulling is a convenient method.
Through some certain method of designing the weight vec-
tor w to make a null in the direction of the interference θl ,
where l = 1,2, · · · ,L. The principle above can be expressed
as

wHa(θl) = 0 (3)

where l = 1,2, · · · ,L. In this way, those interference signals
are not able to pass the spatial filter except of the observed
signal θ0.

In order to achieve the function of phase-only control, we
still need to set

|wn|= 1 (4)

where n = 1,2, · · · ,N and wn stands for the nth entry of the
weight vector of an element.

3 Proposed Algorithm

Before presenting the algorithm, we introduce an important
lemma firstly.

Lemma 1 (Kronecker Decomposition)If a vector a is an
N × 1 vector having the Vandermonde structure a =
[1,e− jϕ , · · · ,e− j(N−1)ϕ ]T with ϕ is a fixed. Assuming the
element number N = 2M , the vector a can be decomposed
as1

a = aM ⊗aM−1 ⊗·· ·⊗a1 (5)

where ⊗ represents the Kronecker product [10]. And the
factor is

am = [1,exp(− j2(m−1)ϕ)]T (6)

where m = 1,2, · · · ,M.

It can be seen that the vector a and its Kronecker factor
are all phase-shift vectors with uni-modulus elements. This
also gives us the theoretical basis of the phase-only nulling.

According to Lemma 1, for an one-dimensional N-element
uniform linear array, we can use the formula (1) as its steer-
ing vector and the structure of the steering vector accords is
Vandermonde structure. Then we can utilize the Kronecker
decomposition to decompose the steering vector into the
form like formula (5). In the same way, the steering vec-
tor of the interference signal a(θl) can also be decomposed

1Actually, for any value of N, we can decompose the vector into the
form of Kronecker product. However, 2 is the smallest prime number. In
the case of the same number of interferences, the decomposition by 2 can
save radar resources to the maximum extent and it is also convenient to
decompose. Therefore, we set the element number to the power of 2 in
this paper.

into the same form. If element number N = 2M , the steer-
ing vector of the interference signal and observed signal can
also be expressed as

a(θl) = u(l)
M ⊗u(l)

M−1 ⊗·· ·⊗u(l)
1 (7)

a(θ0) = vM ⊗vM−1 ⊗·· ·⊗v1 (8)

where u(l)
m = [1,exp(− j2(m−1)ϕl)]T, vm =

[1,exp(− j2(m−1)ϕ0)]T stand for the Kronecker fac-
tors of the steering vectors and ϕl = 2πdsinθl/λ ,
ϕ0 = 2πdsinθ0/λ separatly stands for the spatial phase
of their corresponding directions, and l = 1,2, · · · ,L,
m = 1,2, · · · ,M.

To find a weight vector w satisfying equation (3) and (4),
we propose to construct w as

w = wM ⊗wM−1 ⊗·· ·⊗w1 (9)

where wm stands for the sub-vector needs to be designed
and m = 1,2, · · · ,M. Then the beam pattern in formula (2)
can be rewritten as

f (θ) = wHa(θ)
= (wH

M ⊗wH
M−1 ⊗·· ·⊗wH

1 )(aM ⊗aM−1 ⊗·· ·⊗a1)

= (wH
MaM)⊗ (wH

M−1aM−1)⊗·· ·⊗ (wH
1 a1)

= (wH
MaM)(wH

M−1aM−1) · · ·(wH
1 a1) (10)

where we use the fact that (wH
p ⊗wH

q )(ap⊗aq) = (wH
p ap)⊗

(wH
q aq).

For the interference signal and the observed signal, their
beam pattern can be written as

f (θl) = wHa(θl)

= (wH
Mu(l)

M )(wH
M−1u(l)

M−1) · · ·(wH
1 u(l)

1 ) (11)

f (θ0) = wHa(θ0)

= (wH
MvM)(wH

M−1vM−1) · · ·(wH
1 v1) (12)

where l = 1,2, · · · ,L.

According to the theory of phase-only nulling, we need to
choose one factor in the equation (11) to set it to zero, just
like the form in equation (3). Then we are able to get the
weight of the corresponding part by solving the equation
wH

mu(l)
m = 0 where l = 1,2, · · · ,L, m = 1,2, · · · ,M. Then

according to the solution of the equation above, we will get
the desired sub-vector for the corresponding interference

wl = [−exp( j2(l−1)ϕl ,1)]T (13)

where l = 1,2, · · · ,L.

For the remaining factors, we can utilize then to constrain
the mainlobe of the beam pattern. In other words, for the
remaining factors, we are supposed to maximize f (θ0) by
designing these weight components. Because of the orthog-
onality, it is easy to get

wi = vi = [1,exp(− j2(i−1)ϕ0)]
T (14)

where i = L+1,L+2, · · · ,M.



Algorithm 1 Phase-Only Nulling Algorithm for Uniform
Linear Array via Kronecker Decomposition

1: Input: d,λ ,N = 2M,θ0,θl , l = 1,2, · · · ,L
2: for l = 1,2, · · · ,L do
3: ϕl = 2πdsinθl/λ
4: a(θl) = u(l)

M ⊗u(l)
M−1 ⊗·· ·⊗u(l)

1 , where

u(l)
m = [1,exp(− j2(m−1)ϕl)]T,m = 1,2, · · · ,M

5: solve wH
mu(l)

m = 0
6: wl = [−exp( j2(l−1)ϕl ,1)]T
7: end for
8: a(θ0) = vM ⊗vM−1 ⊗·· ·⊗v1, where

vm = [1,exp(− j2(m−1)ϕ0)]T

9: for i = L+1,L+2, · · · ,M do
10: ϕ0 = 2πdsinθ0/λ
11: wi = vi = [1,exp(− j2(i−1)ϕ0)]T, where

i = L+1,L+2, · · · ,M
12: end for
13: w = wM ⊗wM−1 ⊗·· ·⊗wL ⊗·· ·⊗w1

4 Simulation

4.1 Simulation with different Kronecker fac-
tors

In the section above, we have already explained the pro-
posed algorithm. The key part is the Kronecker decom-
position. There will be a selection for us after decompos-
ing. Considering about the Kronecker factors we got, their
phases are different. In that case, assuming there are two
interferences from -45 and 30 degree, and the observed sig-
nal is in the direction of 15 degree. Executing Algorithm
1, then for the interference suppression, we will give two
different cases in which we select wH

1 u1, wH
2 u2 and wH

MuM ,
wH

M−1uM−1 to achieve it separately for contrast. In the sim-
ulation, we use the one-dimensional uniform linear array.
The element number is the power of 2. Therefore we set
the element number to N = 26 = 64 with the λ/8 as the el-
ement spacing. Then the beam pattern simulations will be
given in Fig.2.

Fig.2(a) shows a desired beam pattern whose mainlobe
points to 15 degree and formed two nulls on the required
angles. Although the beam pattern in Fig.2(b) also form the
required nulls successfully, there are some deviations in the
orientation of the mainlobe, and the level of the side lobe
is relatively high. Therefore, it is clear to see that the per-
formance in Fig.2(a) is much better than the other one. To
explain this phenomenon, we can compare the w1 and wM .
In this case, we can assume w1 = e jΨ and wM = e j32Ψ. Ob-
viously, w1 has a smaller period than wM , which can pro-
vide a better performance in beam pointing. Because of
this, we will select the factors with the smallest footmarks
to suppress interferences in the following simulations.
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Figure 2. Patterns with different Kronecker factors. (a)
Utilizing factors with the smallest footmarks. (b) Utilizing
factors with the biggest footmarks.

4.2 Simulation with different element spac-
ing

In the proposed algorithm, the requirement for the element
spacing is relatively high. In order to show the effect of ele-
ment spacing on the performance of the algorithm, we will
change the element spacing from λ/2, λ/4 to λ/6. The el-
ement number N is still 26 = 64. The simulation result are
shown in Fig.3.

We can see that, the patterns in these three cases can meet
our basic requirements for mainlobe and nulling. Moreover,
with the decrease of the element spacing, the level of grat-
ing lobe also decreases. Although the mainlobe is widened
to a certain extent, we can still say that the performance is
getting better. We can get one of the limitations of the pro-
posed algorithm, which is required to be in the case of small
element spacing.

5 Conclusion

In this paper, we have presented a novel algorithm for
phase-only nulling via Kronecker decomposition. In this
algorithm, we transform the weight vector into the form
of Kronecker product which is composed by several sub-
vectors. In this way, we achieve the function of phase-only
modulation. This algorithm not only has a low complex-
ity but also gives us analytical solutions when design the
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Figure 3. Patterns with different elment spacing. (a) d =
λ/2. (b) d = λ/4. (c) d = λ/6.

weight vector. We also have simulated the algorithm in dif-
ferent situations. From the simulation result, the algorithm
is feasible, obviously. The performance also have changed
with the setting.

However, the proposed algorithm still have several limita-
tions. Firstly, it is can only be used for uniform linear array.
And then, it has a high requirement for the element spacing
which needs to be small enough. On the basis of the current
work, we will study how to increase the array spacing while
maintaining the performance of this algorithm.
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