A Proposed RFI Intelligent Monitoring and Positioning System of FAST

Yu Wang, Haiyan Zhang, Hao Hu, Shijie Huang, Henqian Gan, Minchang Wu, Xiang Zhang, Weiwei Zhu

National Astronomical Observatories of CAS
FAST Key Laboratory of CAS
1. Background
 • RFI in FAST
 • Radio Quite Zone of FAST

2. RFI Intelligent Monitoring and Positioning System
 • Preliminary Design
 • RFI Intelligent Identification Technique
 • RFI Source Localization Technique

3. Conclusion and Prospective
RFI in FAST

- Located in Guizhou, China
- 500-meter aperture (300-meter observing aperture)
- Operates between 70MHz-3GHz
- In the FAST Radio Quiet Zone
RFI in FAST

RFI Categories:
Mobile communication, Satellite signals, FM radio, TV and civil aviation signals...

RFI monitoring antenna in FAST site

FAST RFI monitoring results in 2018 and 2019
Radio Quiet Zone of FAST

- Core Zone: \(r \leq 5 \text{km} \); strictly forbidden to set up or use radio stations, or construct facilities

- Middle Zone: \(5 \text{km} \leq r \leq 10 \text{km} \)

- Remote Zone: \(10 \text{km} \leq r \leq 30 \text{km} \)
RFI Intelligent Monitoring and Positioning System

Function:
✓ To monitoring, positioning and identifying the RFI sources in the core zone;
✓ To establish a RFI database for FAST;
✓ To strengthen the operation and management of the FAST RQZ.

Key Techniques:
✓ RFI intelligent recognition
✓ RFI source location
Preliminary Design

Including:

- 1 center station with a data center located in FAST site;
- 3 remote stations at least distributed in the core zone of FAST RQZ;
- Stations are connected with optical fibers.

Design parameters of each station:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>70MHz-3GHz</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td><-90 dBm</td>
</tr>
<tr>
<td>Monitoring angle range</td>
<td>360°</td>
</tr>
</tbody>
</table>
Purpose: detect and recognize the RFI in real-time

The RFI database:
- Including RFI signals and their characteristics, categories
- Continue to collect signals from monitoring stations
- Providing samples for training models

The RFI model:
- Train the model with machine learning algorithms (SVM, KNN)
- Check the model based on the practical measurement
RFI Intelligent Identification

Flow chart of the RFI intelligent identification system
The Time Difference of Arrival (TDOA) positioning:

- The remote stations transmit the same RFI signal measured at the same time to the central station;

- Then, the time difference of arrival between remote stations can be derived by cross-correlation algorithm;

- After that, the time difference can be converted into the distance difference, and the hyperbolic curve of RFI source distribution can be obtained;

- Finally, the position of the RFI source can be derived from the intersection point between multiple curves.
RFI Source Localization

The same signal measured at the same time by different stations:

\[x_1(t) = s(t) + n_1(t) \]
\[x_2(t) = A \ast s(t - \tau) + n_2(t) \]

\(s(t) \), \(A \ast s(t - \tau) \): the same RFI signal received by different stations
\(n_1(t) \), \(n_2(t) \): the noise of different stations

\[R_{x_1x_2}(\Delta t) = A \ast R_{ss}(\Delta t - \tau) + A \ast R_{sn_1}(\Delta t - \tau) + R_{sn_2}(\Delta t) + R_{n_1n_2}(\Delta t) \]

\(R_{x_1x_2} \): the cross-correlation between \(x_1(t) \) and \(x_2(t) \)
\(R_{ss} \): the autocorrelation of the \(s(t) \)
\(R_{sn} \): the cross-correlation between the RFI and noise

Hypothetically, RFI and noise in different stations are uncorrelated:

\[R_{x_1x_2}(\Delta t) = A \ast R_{ss}(\Delta t - \tau) \]

the time difference \(\tau \) can be obtained by finding the maximum value of \(R_{x_1x_2}(\Delta t) \)
RFI Source Localization

Schematic illustration of the TDOA algorithm

Typically, the time measurement error is 109ns for radio signals with a bandwidth greater than 10KHz, and the corresponding distance measurement error is about 30m.
Conclusion and Prospective

Conclusion:
• Established a RFI database for training the model
• Designed parameters for monitoring stations
• Formulated technical routes for signal identification and positioning

Prospective:
• Train the RFI model with appropriate algorithms
• Manufacture and test the prototype of monitoring station
• Check the model accuracy
Thanks!