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Theory of Electric Field Integral Equation

Figure 1: Scattering problem illuminated 
by sources Ei and Hi (εd≠1, μd=1) 

Electric field integral equation (EFIE) is written in 
terms of the electric current density J(r) for an 
inhomogeneous isotropic dielectric body:

E(r): total electric field
Es(r): scattered electric field
Ei(r): incident electric field
J(r): electric current density 
G = exp(-jkR)/R
R = |r – r′|, distance between observation & source points
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Volume Integral Equation Using Pulse Functions

• The dielectric region is divided into tetrahedral cells

• The electric current density is expanded using pulse functions:

M: number of unknown

𝑱𝑥
𝑖 , 𝑱𝑦

𝑖 and 𝑱𝑧
𝑖 : x, y, z components of electric current density

𝒫𝑖(𝒓): pulse basis function
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• After applying the point matching technique, the linear equations for 
Method of Moments (MoM) matrix is obtained as:
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TCM Using Pulse Functions

• EFIE due to impressed current J(r):

ቑ
𝑍𝑣 𝑱 + 𝑗𝜔∆𝜀 −1𝑱 = 𝑬𝑖

𝑍 = 𝑍𝑉 + 𝑗𝜔∆𝜀 −1

△ 𝜀 = 𝜀 − 𝜀0

𝑍(𝑱) = 𝑬𝑖
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• The eigenvalue equation using TCM is defined as:

X ∙ 𝑱𝑛 = 𝜆𝑛R ∙ 𝑱𝑛

R: real part of impedance operator Z

X: imaginary part of impedance operator Z

𝜆𝑛: characteristic values of the generalized eigenvalue problem

𝑱𝑛 : real valued currents of the generalized eigenvalue problem

• The induced total current J under external excitations with the modal
weighting coefficient 𝑉𝑛

𝑖 :

𝑱 = σ𝑛=1
𝑀 𝑉𝑛

𝑖 𝑱𝑛

1+𝑗𝜆𝑛
,      𝑉𝑛

𝑖 = 𝑱𝑛, 𝑬
𝑖 = ′𝑉׬ 𝑱𝑛 ∙ 𝑬

𝑖𝑑𝜏′
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• The complex power radiated by the induced current J in the dielectric 
body illuminated by the incident field Ei is given by:

𝑃 = 𝑱∗, 𝑍𝑱 = 𝑱∗, 𝑅𝑱 + 𝑗 𝑱∗, 𝑋𝑱

• For the n-th CM, the real part of complex power is:

𝑱𝑛
∗ , 𝑅𝑱𝑛 = 𝑅𝑒 𝑱𝑛

∗ , 𝑍𝑱𝑛 = 𝑅𝑒(𝑃)

• For the n-th CM, the imaginary part of 𝑱𝑛
∗ , 𝑍𝑱𝑛 is:

𝑱𝑛
∗ , 𝑋𝑱𝑛 = 𝐼𝑚 𝑱𝑛

∗ , 𝑍𝑱𝑛 −
1

𝝎
න

𝑽′

𝑱𝑛
∗ ∙ ∆𝜺 −𝟏𝑱𝑛 𝑑𝑣′
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Numerical Examples and Results 
• MoM solution of VIE is compared with Altair® FEKO simulation 

program which uses SWG basis functions

• The incident angles of the plane wave are 𝜃𝑖 = 0° and 𝜑𝑖 = 0°

• The power ratios (PRs) of the real and imaginary parts of 𝑱∗, 𝑍𝑱 for 
the proposed (pulse) and SWG methods can be calculated as follows:

• A convergence study of J is performed using the error norm between 
induced current under external excitations of CMA and SWG methods:
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Figure 2: Eigenvalues of the first 6 CMs of a 0.2𝜆0sphere for different 
number of meshes, 𝜀𝑟 = 4. The coloured shapes (𝜊, Δ,∗)  are for FEKO®’s 
CM results.

(a) TEL=𝜆𝑒𝑓𝑓/5, 307 tetrahedrons, 

(b) TEL=𝜆𝑒𝑓𝑓/7.5, 1160 tetrahedrons, 

(c) TEL=𝜆𝑒𝑓𝑓/10, 2772 tetrahedrons.

NB: a, b, c-> meshed using FEKO, TEL: tetrahedron edge lengths, 𝜆𝑒𝑓𝑓 = 𝜆0/ 𝜀𝑒𝑓𝑓
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Figure 2 (cont’d): Eigenvalues of the first 6 CMs of a 0.2𝜆0sphere for different 
number of meshes, 𝜀𝑟 = 4 (The coloured shapes (𝜊, Δ,∗)  are for FEKO®’s CM results.

(d) TEL=𝜆𝑒𝑓𝑓/5, 302 tetrahedrons, 

(e) TEL=𝜆𝑒𝑓𝑓/10, 3398 tetrahedrons. 

NB: d,e->meshed using FEMLAB , TEL: tetrahedron edge lengths, 𝜆𝑒𝑓𝑓 = 𝜆0/ 𝜀𝑒𝑓𝑓
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• As the number of meshes increases, the characteristic eigenvalues appear 
to converge well for the first 6 CMs when the TEL is 𝜆𝑒𝑓𝑓/10

• Different meshes generated by Altair FEKO® and FEMLAB® change the CM 
results, especially for the larger (negative) eigenvalues

Table 1. The eigenvalue of first 6 the CMs for the 0.2𝜆0 sphere for
different number of meshes at f0 =1 GHz

NB: Meshing with Altair FEKO®, solved using pulse functions.
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Figure 3: Power ratios of Ppulse and PSWG for a scattering 
problem from a cylinder, 𝜀𝑟 = 4, r = 0.1𝜆0; h = 0.25𝜆0, 3885 
tetrahedrons, (a) f = 0.5 GHz, (b) f = 0.75 MHz, (c) f = 1 GHz.
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• The power ratios of real and imaginary parts of total power 
calculated by the SWG and pulse function methods are near unity for 
9, 12, and 15 modes at the frequencies f = 0.5, 0.75, and 1 GHz, 
respectively

• The ratio for the imaginary parts of total power does not deviate 
from unity
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Figure 4: Error between Jpulse and JSWG, real part and imaginary parts of 
Jpulse and JSWG involving a scattering problem from a cube, respectively 
, 𝜀𝑟 = 4 and 𝜀𝑟 = 9, ℓ0 = 0.2𝜆0, (a) f = 0.5 GHz, (b) f = 0.75 GHz, (c) f 
= 1 GHz.
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• Error(J) is with 𝜀𝑟 = 9 higher than 𝜀𝑟 = 4 in general with the same 
number of meshes because of higher 𝜆𝑒𝑓𝑓

• Increasing the number of meshes up to 10355 tetrahedrons 
(TEL=𝜆𝑒𝑓𝑓/20 for 𝜀𝑟 = 4 ) does not decrease the error because of 
small contributions from CMs with large eigenvalues (i.e., non-
significant modes)

• Further reduction of this error values will be possible by utilizing 
higher quadrature rules for test functions and careful singularity 
treatment

• The error between Jpulse and JSWG was observed to be decreasing when 
more eigenvalues are used for the calculation of J
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Conclusion

• Pulse functions and point matching method in VIE

• Easy to solve

• Feasible for CMs extraction of dielectric bodies
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