Importance of modal analysis in vibratory microgyroscopes

Jacek Nazdrowicz, Adam Stawiński, Andrzej Napieralski
Lodz University of Technology,
Department of Microelectronics and Computer Sciences
Ul. Wólczańska 221/223, B18
Łódź, 90-244 Poland
e-mail jnazdrowicz@dmcs.pl

Results presented in the paper are supported by the project STRATEGMED 2/266299/19NCBR/2016 funded by The National Centre for Research and Development in Poland.
Microsystems are influenced by some negative factors, also by temperature,

In case of small devices (particularly microsensors), temperature variation can be very destructive particularly there where accuracy is highly required,

Natural frequencies should be taken into account in relation to geometry and temperature,

In model one cycle of temperature was applied. We assumed also that temperature value is constant over gyroscope surface. This assumption comes from the fact that in case of very small devices (on microlevel)

The main purpose of the presentation is to show importance of modal analysis in MEMS devices performance assessment.
THEORETICAL BACKGROUND
Inertial sensor - gyroscope

- Coriolis effect,
- Displacement in y direction is proportional to angular velocity,
- Resonance effect,
- Amplitude influences on performance of device and range of measurement.
Gyroscope principle of operation can be described with two 2nd order differential motion equations:

\[
\begin{bmatrix}
 m_x & 0 \\
 0 & m_y
\end{bmatrix}
\begin{bmatrix}
 \frac{d^2 x}{dt^2} \\
 \frac{d^2 y}{dt^2}
\end{bmatrix}
+ \begin{bmatrix}
 c_x & 0 \\
 0 & c_y
\end{bmatrix}
\begin{bmatrix}
 \frac{dx}{dt} \\
 \frac{dy}{dt}
\end{bmatrix}
+ \begin{bmatrix}
 k_{xx} & k_{xy} \\
 k_{yx} & k_{yy}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
= -2m_x \Omega \frac{dy}{dt} + F_x \\
-2m_y \Omega \frac{dx}{dt} + F_y
\]

Stiffness matrix

Damping matrix

\[k_{yx} = \frac{3EI(l_1 - l_2)}{l_cl_1^3}\]

If \(l_1 = l_2 \) then \(k_{yx} = 0 \)

quantities temperature-dependent

Department of Microelectronics and Computer Science
email: secretary@dmcs.p.lodz.pl
Eigenfrequency and Q factor

\[\omega_x = \sqrt{\frac{k_x}{m_x}}, \quad \omega_y = \sqrt{\frac{k_y}{m_y}}, \]

- Natural frequencies

\[Q_x = \frac{m_x \omega_x}{c_x}, \quad Q_y = \frac{m_y \omega_y}{c_y}, \quad \zeta_x = \frac{1}{2Q_x}, \quad \zeta_y = \frac{1}{2Q_y} \]

- Quality factors
- Damping ratios

\[\frac{d^2 x}{dt^2} + \zeta_x \omega_x \frac{dx}{dt} + \omega_x^2 x = \frac{F_D}{m_x} \]

- Modified Newton’s motion equations

\[\frac{d^2 y}{dt^2} + \zeta_y \omega_y \frac{dy}{dt} + \omega_y^2 y = -2 \frac{dx}{dt} \Omega \]
Eigenfrequency and Q factor

\[\omega_x = \sqrt{\frac{k_x}{m_x}}, \quad \omega_y = \sqrt{\frac{k_y}{m_y}}, \]

- Natural frequencies

\[Q_x = \frac{m_x \omega_x}{c_x}, \quad Q_y = \frac{m_y \omega_y}{c_y}, \quad \zeta_x = \frac{1}{2Q_x}, \quad \zeta_y = \frac{1}{2Q_y} \]

- Quality factors
 - Damping ratios

\[\frac{d^2x}{dt^2} + \zeta_x \omega_x \frac{dx}{dt} + \omega_x^2 x = \frac{F_D}{m_x} \]

- Modified Newton’s motion equations

\[\frac{d^2y}{dt^2} + \zeta_y \omega_y \frac{dy}{dt} + \omega_y^2 y = -2 \frac{dx}{dt} \Omega \]
Models of inertial gyroscopes

Two types of MEMS gyroscopes were considered:

- With one central inertial mass common for both drive and sense directions
- With two inertial masses: first, central mass for drive direction and second, with inertial frame.

Note: For sense directions mass is considered as a sum of both inertial frame and central mass.
- Two different spring types were applied to device geometry structure.
- The simplification – model does not assume fabrication imperfection and side wall effect.

Department of Microelectronics and Computer Science
email: secretary@dmcs.p.lodz.pl
MODEL in SIMULINK

Model in SIMULINK calculating two 2nd order Newton’s equations
Geometry details of device

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof mass length/height</td>
<td>1000*10^-6m</td>
</tr>
<tr>
<td>Edge spring length</td>
<td>200*10^-6m</td>
</tr>
<tr>
<td>Device thickness</td>
<td>30*10^-6m</td>
</tr>
<tr>
<td>Drive electrode count</td>
<td>30</td>
</tr>
<tr>
<td>Sense electrode count</td>
<td>30</td>
</tr>
<tr>
<td>Gap between fingers</td>
<td>26.5*10^-6m</td>
</tr>
</tbody>
</table>

Geometry details for device with one inertial mass

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof mass height</td>
<td>1000*10^-6m</td>
</tr>
<tr>
<td>Proof mass length</td>
<td>500*10^-6m</td>
</tr>
<tr>
<td>Inertial frame height</td>
<td>675*10^-6m</td>
</tr>
<tr>
<td>Inertial frame thickness</td>
<td>25*10^-6m</td>
</tr>
<tr>
<td>Device thickness</td>
<td>30*10^-6m</td>
</tr>
<tr>
<td>Drive electrode count</td>
<td>30</td>
</tr>
<tr>
<td>Sense electrode count</td>
<td>30</td>
</tr>
<tr>
<td>Gap between fingers</td>
<td>26.5*10^-6m</td>
</tr>
</tbody>
</table>

Geometry details for device with inertial mass and frame

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>160GPa</td>
</tr>
<tr>
<td>Poison ratio</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Physical properties of polysilicon

Department of Microelectronics and Computer Science
email: secretary@dmcs.p.lodz.pl
RESULTS
Eigenfrequency mode analysis

- 1st mode related to drive motion direction
- 2nd mode related to sense motion direction

- Because of similar structures of both directions – eigenfrequencies are very similar - difference is about 15Hz
SIMULATION RESULTS
Natural frequency dependency on inertial frame thickness for different temperatures and for spring locations 1/4 distance from symmetry axis (drive direction).

Natural frequency dependency on inertial frame thickness for different temperatures and for spring locations 1/4 distance from symmetry axis (sense direction).
SIMULATION RESULTS

Natural frequency dependency on inertial frame thickness for different temperatures and for spring locations 1/2 distance from symmetry axis (drive direction) - gyroscope with two masses.

Natural frequency dependency on inertial frame thickness for different temperatures and for spring locations 1/2 distance from symmetry axis (sense direction) - gyroscope with two masses.
SIMULATION RESULTS

1nd mode modal analysis of MEMS Gyroscope without inertial frame with inertial frame and central.

2nd mode modal analysis of MEMS Gyroscope without inertial frame with inertial frame and central.
Magnitude and phase

Gyroscope with one inertial mass

Gyroscope with two masses.
CONCLUSIONS

Results presented here shows, how important is modal analysis in performance assessment for MEMS inertial devices. Some crucial conclusions extracted from these results are:

- Geometry details, dimensions and temperature influences on eigenfrequency response
- There are non-linear dependencies between dimensions and eigenfrequencies
- Optimal geometry is device with one inertial mass because of perfect mode-matching (it is seen in magnitude and phase plots)
CONCLUSIONS

A large number of simulations were performed, however time presentation limit do not allow to show temperature dependencies for all geometry details.

- Results obtained from simulations clearly show that geometry and temperature variation have enormous influence on MEMS Gyroscope behavior and this factor cannot (!) be avoided during structure design.

- In model we did not assumed fabrication imperfections and side wall angle, however both may empower (multiply) degradation of performance because of mode-matching lost.

- Each structure configuration should be considered separately, because the natural frequency dependency on temperature and dimensions gives different results.