Source Estimation of Electromagnetic Information Leakage from Information Devices

Daiya Nagata1 \hspace{1cm} Ryota Birukawa1 \hspace{1cm} Yu-ichi Hayashi2 \hspace{1cm} Takaaki Mizuki3 \hspace{1cm} Hideaki Sone3

1 Graduate School of Information Sciences, Tohoku University
2 Nara Institute of Science and Technology
3 Cyberscience Center, Tohoku University
Contents

1. Background
2. The leakage frequency estimation
3. Measuring the distribution of electromagnetic field
4. Conclusion
Contents

1. Background

2. The leakage frequency estimation

3. Measuring the distribution of electromagnetic field

4. Conclusion
The threat of EM information leakage from display

- Achieved by exploiting unintentional electromagnetic (EM) emanation at a specific frequency
- Various information devices have been reported as the targets (desktops, laptops, tablets, etc.)
EM information leakage

1. Observe the EM emanation

2. Select a frequency

3. Demodulate

4. Reconstruct the screen

Leakage

No leakage
Purpose

| Problems | Eavesdropping the screen image of a device by exploiting EM emanation
| EM shielding the device is known as a countermeasure of the EM information leakage
| → EM emanation sources should be located to suppress EM emission |

| Purpose | Source estimation of EM emanation by measuring the distribution of electromagnetic field at specific frequencies which are determined by estimating leakage frequencies of a tablet and a display monitor |
Contents

1. Background

2. The leakage frequency estimation
 - How the EM emanation be controlled
 - Estimating the leakage frequency in the tablet
 - Estimating the leakage frequency in the display monitor

3. Measuring the distribution of electromagnetic filed

4. Conclusion
There is a **correlation** between the transmission data of the displayed image and the AM-demodulated EM emanation at the leakage freq.
Previous study | Leakage estimation without screen reconstruction

There is a **correlation** between the transmission data of the displayed image and the AM-demodulated EM emanation at the leakage freq.
Previous study | Leakage estimation without screen reconstruction

- The pattern was controlled as an audible frequency range signal
- By detecting this audio with low-cost equipment, the leakage freq. can be estimated
Mechanism of the EM emanation in digital signal

The number of bit inversion affects the EM emanation

The EM emanation depends on the display color

- **High emission color**
 - CH1: 0101010
 - CH2: 0101010
 - CH3: XXX1010

- **Low emission color**
 - CH1: 0000000
 - CH2: 0000000
 - CH3: XXX0000

Example of 1 pixel in LVDS
How the EM emanation be controlled

A colored section with a large amount of bit inversion is placed below a white section

Control image

AM demodulate the EM emanation at leakage freq.

High

Low

EM emanation

Time
How the EM emanation be controlled

Control image

- emanation: Small
- emanation: Large
- emanation: Small
- emanation: Large

A colored section with a large amount of bit inversion is placed below a white section

AM demodulate the EM emanation at leakage freq.

High

Low

EM emanation

Time
How the EM emanation be controlled

Control image

A colored section with a large amount of bit inversion is placed below a white section

AM demodulate the EM emanation at leakage freq.

High

Low

EM emanation

Time
How the EM emanation be controlled

A colored section with a large amount of bit inversion is placed below a white section

Control image

AM demodulate the EM emanation at leakage freq.

EM emanation

Time

High

Low
How the EM emanation be controlled

A colored section with a large amount of bit inversion is placed below a white section.

AM demodulate the EM emanation at leakage freq.
How the EM emanation be controlled

A colored section with a large amount of bit inversion is placed below a white section.
Contents

1. Background

2. The leakage frequency estimation
 - How the EM emanation be controlled
 - **Estimating the leakage frequency in the tablet**
 - Estimating the leakage frequency in the display monitor

3. Measuring the distribution of electromagnetic filed

4. Conclusion
Transmission protocol used in tablets and laptops

LVDS (Low Voltage Differential Signaling) / FPD-Link

- A physical layer protocol which achieves high-speed data transmission
- RGB pixel data (18bit): Red 6bit, Green 6bit, Blue 6bit
- Synchronization signal (3bit): Data Enable 1bit, Vsync 1bit, Hsync 1bit

Bit mapping and timing chart of LVDS
Control image considering the number of bit inversion in LVDS

Control image in LVDS

<table>
<thead>
<tr>
<th>Displayed color</th>
<th>RGB value</th>
<th>LVDS data</th>
<th>EM emanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All bits 1</td>
<td>255 255 255</td>
<td>CH1: 111111</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2: 111111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3: XXX1111</td>
<td></td>
</tr>
<tr>
<td>Bit inversion for all channels</td>
<td>168 50 164</td>
<td>CH1: 0101010</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2: 0101010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3: XXX1010</td>
<td></td>
</tr>
</tbody>
</table>
Experimental setup

- Control image was displayed on the evaluation target device
- The EM emanation was AM-demodulated from 70 MHz to 1000 MHz
- Amplitude of the power spectrum at 240 Hz of demodulated emanation and audio signal were observed

\[f = 4 \times 60 = 240 \text{ Hz} \]
Measurement results

- Information leakage likely occurred at frequencies where high peaks were observed
- 653 MHz and 932 MHz were selected to observe in greater details
Reconstruction results at each frequency

Both frequencies contain emanated information

Test image

653 MHz

932 MHz
Contents

1. Background

2. The leakage frequency estimation
 - How the EM emanation be controlled
 - Estimating the leakage frequency in the tablet
 - Estimating the leakage frequency in the display monitor

3. Measuring the distribution of electromagnetic field

4. Conclusion
TMDS (Transition Minimized Differential Signaling)

- Data transmission protocol used in HDMI/DVI
- 3 channels for R, G and B are converted by 8b/10

Transmission minimized
- Translate 8bit to 9bit
- XOR process or XNOR process are applied

\[\text{e.g. } 55_{16} : 01010101 \rightarrow 100110011\]

DC-Balancing
- Translate 9bit to 10bit
- Even the same color pixel has different encoding depending on past data
- There are 52 types of conversion that do not depend on past data
- Bit inversion is 2 to 5 times

\[\text{e.g. } 100110011 \rightarrow 0100110011\]
Control image considering the number of bit inversion in TMDS

<table>
<thead>
<tr>
<th>Displayed color</th>
<th>RGB value</th>
<th>Transmission data</th>
<th>EM emanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit inversion every 2 bits for all channels</td>
<td>16 16 16</td>
<td>CH1: 0111100000, CH2: 0111100000, CH3: 0111100000</td>
<td>Small</td>
</tr>
<tr>
<td>Bit inversion every 5 bits for all channels</td>
<td>85 85 85</td>
<td>CH1: 0100100111, CH2: 0100100111, CH3: 0100100111</td>
<td>Large</td>
</tr>
</tbody>
</table>
Experiment Setup

- Control image was displayed on the display monitor connected by HDMI cable.
- The EM emanation was AM-demodulated from 20 MHz to 1000 MHz.
- Amplitude of the power spectrum at 240 Hz of demodulated emanation and audio signal were observed.

\[f = 4 \times 60 = 240 \text{ Hz} \]
Measurement result

- Information leakage likely occurred at frequencies with high peaks
- Harmonics of the HDMI clock signal (154 MHz) are high emanation
- 462 MHz, 522 MHz were selected to observe in greater details

Power spectrum at 240 Hz of the AM-demodulated EM emanation
Reconstruction results at each frequency

Both frequencies contain emanated information

Test image

The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
Contents

1. Background

2. The leakage frequency estimation

3. Measuring the distribution of electromagnetic field

4. Conclusion
Estimating EM emanation sources of the tablet

- The EM emanation source of 653MHz is the cable which connects LCD panel to the board of the tablet
- The EM emanation source of 932MHz is the edge of the screen

→ Confirmed multiple EM emanation sources in the tablet
Estimating EM emanation sources in the display monitor

- The EM emanation sources are HDMI cable, power supply wiring at 462 MHz
- The EM emanation sources are the edge of the screen at 522 MHz
 → 462 MHz and 522 MHz have different emanation sources
Reconstruction results at displaying the display setting screen

The display setting window image is overwritten on the original screen image signal transmitted in HDMI cable

→ Different reconstruction image means their leakage frequency have different sources which are before and after the setting screen is overwritten
Contents

1. Background

2. The leakage frequency estimation

3. Measuring the distribution of electromagnetic field

4. Conclusion
Conclusion

Background
EM emanation sources should be located to suppress EM emanation

Purpose
Propose a new method of source estimation of EM emanation by measuring the distribution of electromagnetic field at specific frequencies which are determined by estimating leakage frequencies of a tablet and a display monitor

Conclusion
A new method to estimate source of EM emanation is proposed. Multiple EM emanation sources should be taken into account to prevent EM information leakage from devices

Supported by JSPS KAKENHI 17H01751