Power maximization for a multiple - input and multiple - output wireless power transfer system described by the admittance matrix

Ben Minnaert *(1), Giuseppina Monti (2), Franco Mastri (3), Alessandra Costanzo (3), and Mauro Mongiardo (4)

(1) Odisee University College of Applied Sciences, Ghent, Belgium
(2) Dep. of Engineering for Innovation, University of Salento, Lecce, Italy
(3) Dep. of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Bologna, Italy
(4) Dep. of Engineering, University of Perugia, Perugia, Italy
Outline

• Goal

• General procedure for power maximization
 • Describing the WPT system as a multiport
 • Norton equivalent circuit of the multiport
 • Optimal loads for power maximization
 • Overview procedure

• Example: capacitive WPT

• Conclusion
In this work, the optimal loads to maximize the power transfer for a wireless power transfer (WPT) system with any number of transmitters and receivers are determined.

This was already done for WPT systems characterized by their impedance matrix, but for certain applications (e.g. capacitive WPT), an admittance matrix approach is much more straightforward.
Describing the WPT system as a multiport

A multiport network \mathcal{N} with M transmitters and N receivers.

The M input ports of the network are connected to M current sources.

At the N output ports N load admittances $Y_{L,i}$ are present.
The relation between the voltages and the currents of the multiport can be described by an admittance matrix \mathbf{Y} which can be partitioned in four submatrices:

$$
\begin{bmatrix}
\mathbf{i}_M \\
\mathbf{i}_N
\end{bmatrix} =
\begin{bmatrix}
\mathbf{Y}_{MM} & \mathbf{Y}_{MN} \\
\mathbf{Y}_{NM} & \mathbf{Y}_{NN}
\end{bmatrix}
\begin{bmatrix}
\mathbf{v}_M \\
\mathbf{v}_N
\end{bmatrix}
$$

$$
\mathbf{i}_M =
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_M
\end{bmatrix},
\mathbf{v}_M =
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_M
\end{bmatrix}
$$

$$
\mathbf{i}_N =
\begin{bmatrix}
I_{L,1} \\
I_{L,2} \\
\vdots \\
I_{L,N}
\end{bmatrix},
\mathbf{v}_N =
\begin{bmatrix}
V_{L,1} \\
V_{L,2} \\
\vdots \\
V_{L,N}
\end{bmatrix}
$$
Norton equivalent circuit of the multiport

\[\mathcal{N}' \text{ network} \ [Y] \]

\[\mathcal{N}_0 \text{ network} \ [Y_0] \]

\[\mathcal{N}_L \text{ network} \ [Y_L] \]

Norton’s theorem

M input ports are replaced by open circuits.

The \(N \) loads of the receiver are represented by the network \(\mathcal{N}_L \) described by the admittance matrix \(Y_L \).
$I^{(no)}_i$ are the **Norton currents**, given by:

$$i_N = Y_{NM} Y_{MM}^{-1} \cdot i_M \equiv i^{(no)}_N = \begin{bmatrix} I^{(no)}_1 \\ I^{(no)}_2 \\ \vdots \\ I^{(no)}_N \end{bmatrix}$$
The Norton admittance matrix Y_0 which characterizes network \mathcal{N}_0 is defined by

$$i_N = Y_0 \cdot v_N$$

As function of the original admittance matrix Y, Y_0 is given by:

$$Y_0 = Y_{NN} - Y_{NM} \cdot Y_{MM}^{-1} \cdot Y_{MN}$$
Optimal loads for power maximization

The goal of this work is to determine the loads that realize maximum power transfer from the M transmitters to the N receivers, i.e. that maximize the total output power P_{out} defined as

$$P_{out} = \sum_{i=1}^{N} P_i$$

with P_i the output power delivered to load $Y_{L,i}$.

Power maximization for a multiple–input and multiple–output wireless power transfer system described by the admittance matrix - ben.minnaert@odisee.be
Voltage condition for achieving maximum power transfer to loads [*]:

\[v_N = (Y_0 + Y_0^+)^{-1} \cdot i^{(no)} \]

with \(Y_0^+ \) the conjugate transpose of \(Y_0 \).

This results in the current condition for the loads at the maximum power configuration:

\[i_N = i^{(no)} - Y_0 \cdot (Y_0 + Y_0^+)^{-1} \cdot i^{(no)} \]

\[\Rightarrow \text{The optimal loads are given by} \quad Y_{L,i} = \frac{I_{L,i}}{V_{L,i}} \]

with \(V_{L,i} \) and \(I_{L,i} \) the elements of \(v_N \) and \(i_N \).

Overview procedure

The general procedure to find the loads for power maximization for a WPT system with any number of transmitters and receivers:

1. Establish (e.g., by measurement or simulation) the admittance matrix Y of the network.
2. Determine the Norton current sources $I_{i}^{(no)}$.
3. Set up the Norton admittance matrix Y_0.
4. Calculate the voltages v_N and currents i_N for the loads at the maximum power configuration.
5. Determine the optimal loads $Y_{L,i}$ from these voltages and currents.
Example: capacitive WPT with 2 transmitters and 3 receivers

Two current sources I_1 and I_2 power the system with operating angular frequency ω_0.

At the 3 output ports load admittances $Y_{L,1}$, $Y_{L,2}$ and $Y_{L,3}$ are connected.
The shunt conductances $g_{jj} (j=1,...,5)$ describe the losses in the circuit.

The mutual capacitances $C_{13}, C_{14}, C_{15}, C_{23}, C_{24}$ and C_{25} represent the desired electric coupling between the transmitter capacitances C_1, C_2, and the receiver capacitances C_3, C_4, C_5.

Undesired electric coupling is present between both transmitters, indicated by the mutual capacitance C_{12}.

Also between the receivers, an undesired coupling is present: C_{34}, C_{35} and C_{45}.

Power maximization for a multiple–input and multiple–output wireless power transfer system described by the admittance matrix - ben.minnaert@odisee.be
In order to obtain a resonant scheme, the inductors L_j are added:

$$L_j = \frac{1}{\omega_0^2 C_j}$$

The coupling factor k_{ij} is defined as

$$k_{ij} = \frac{C_{ij}}{\sqrt{C_i C_j}}$$

$(i,j=1,...,5)$
The entire multiport system (indicated by the dashed rectangle) is fully determined by the admittance matrix Y which is, at the resonance angular frequency ω_0, equal to:

$$Y = \begin{bmatrix} Y_{MM} & Y_{MN} \\ Y_{NM} & Y_{NN} \end{bmatrix} = \begin{bmatrix} g_{11} & -j b_{12} & -j b_{13} & -j b_{14} & -j b_{15} \\ -j b_{12} & g_{22} & -j b_{23} & -j b_{24} & -j b_{25} \\ -j b_{13} & -j b_{23} & g_{33} & -j b_{34} & -j b_{35} \\ -j b_{14} & -j b_{24} & -j b_{34} & g_{44} & -j b_{45} \\ -j b_{15} & -j b_{25} & -j b_{35} & -j b_{45} & g_{55} \end{bmatrix}$$

with $b_{ij} = \omega_0 c_{ij}$.
In order to verify the analytical results, **circuital simulations** have been performed in SPICE with the following example values:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{11}</td>
<td>1.00 mS</td>
<td>C_1</td>
<td>350 pF</td>
</tr>
<tr>
<td>g_{22}</td>
<td>1.25 mS</td>
<td>C_2</td>
<td>300 pF</td>
</tr>
<tr>
<td>g_{33}</td>
<td>1.50 mS</td>
<td>C_3</td>
<td>250 pF</td>
</tr>
<tr>
<td>g_{44}</td>
<td>1.75 mS</td>
<td>C_4</td>
<td>225 pF</td>
</tr>
<tr>
<td>g_{55}</td>
<td>2.00 mS</td>
<td>C_5</td>
<td>200 pF</td>
</tr>
<tr>
<td>I_1</td>
<td>100 mA</td>
<td>f_0</td>
<td>10 MHz</td>
</tr>
<tr>
<td>I_2</td>
<td>200 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desired coupling</th>
<th>Value</th>
<th>Undesired coupling</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{13}</td>
<td>30 %</td>
<td>k_{12}</td>
<td>10 %</td>
</tr>
<tr>
<td>k_{14}</td>
<td>25 %</td>
<td>k_{34}</td>
<td>5 %</td>
</tr>
<tr>
<td>k_{15}</td>
<td>20 %</td>
<td>k_{35}</td>
<td>2 %</td>
</tr>
<tr>
<td>k_{23}</td>
<td>25 %</td>
<td>k_{45}</td>
<td>5 %</td>
</tr>
<tr>
<td>k_{24}</td>
<td>20 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{25}</td>
<td>15 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal terminating admittances according to the developed theory are:

<table>
<thead>
<tr>
<th>$G_{L,1}$ (mS)</th>
<th>L_{L1} (μH)</th>
<th>$G_{L,2}$ (mS)</th>
<th>L_{L2} (μH)</th>
<th>$G_{L,3}$ (mS)</th>
<th>L_{L3} (μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4</td>
<td>524.0</td>
<td>23.0</td>
<td>443.0</td>
<td>22.6</td>
<td>370</td>
</tr>
</tbody>
</table>

First, a simulation with the network terminated on the optimal admittances returns an output power of 4.64 W.
Next, simulations were performed by varying one load conductance $G_{L,i}$ at a time while keeping all the others constant at their optimal value.

The results confirm the data provided by the theory for this example.
Next, simulations were performed by varying one load inductance $L_{L,i}$ at a time while keeping all the others constant at their optimal value.

The results confirm the data provided by the theory for this example.
Conclusion

A general procedure was shown to easily determine the terminating loads that maximize power transfer for a WPT system

• with any number of transmitters or receivers,

• characterized by its admittance matrix.
Thank you for reading

Any questions? Mail me at ben.minnaert@odisee.be