Meter to Decameter Wave Spectral Radio Heliograph

Linjie Chen, Yihua Yan, Wei Wang, Fei Liu, Lihong Geng

Mingantu Observation Station
National Astronomical Observatories, CAS
Outline

1. Scientific Objectives
2. Present Instruments
3. Specifications
4. System Design
5. Key technologies
6. Summaries
Scientific Objectives for the Solar-interplanetary sub-system of Meridian II project

With the terrestrial instruments, detect the solar intense activities, including the solar flare, CME, interplanetary shock wave, non-thermal particles, solar winds, etc. in the space between the solar surface to the Earth (0-215 R⊙); study the disturbance, coupling mechanism, energy transfer mechanism of the interplanetary and terrestrial space impacted by the solar activities.
Earth

Sun

Flare

Non-thermal particles

CME

Solar Wind

Shock Wave

Mingantu Meter - Decameter Wave Radio Heliograph, 30-240MHz (~1-5 Rs)

Solar Radio Burst
Project Significance

- Meter-Decameter Wave Spectral Radio Heliograph is an important part of the Solar-interplanetary sub-system of Meridian II project;
- Combined with MUSER, it can achieve a solar radio spectral imaging system at the frequency range from centimeter to decameter.
- The system will be a solar radio detecting system with the capability of high-temporal, high-spectral and high-spatial resolutions in the widest frequency band. It can do the full monitoring for the disturbance source in interplanetary space.
Scientific Objectives

- So far, it is a big scientific gap in the world to dedicatedly observe solar radio bursts with high-performance images in the frequency range of meter and decameter wavelengths.
- This frequency is just covered the important space of CMEs and non-thermal particles’ propagation, acceleration and evolutions, which strongly disturbs and impacts on the interplanetary and terrestrial space, and may trigger the disastrous space weather events.
- Therefore, it is most necessary to build a new solar radio telescope operating in the frequency of meter and decameter wavelength and with high temporal, spectral, and spatial resolutions.
Solar Radio Emission

\[\nu_p = 8.98 \times 10^3 \sqrt{n_e} \]
\[\nu_{\tau=1} \approx 0.5 n_e T_e^{-3/4} L^{1/2} \]
\[\nu_B = 2.8 \times 10^6 B \]

(\text{Gary, 1999})

(1) Bremsstrahlung
(2) Gyroresonance
(3) Coherent emission
\[\star \text{ Plasma emission} \]
\[\star \text{ ECME} \]
Solar and Galactic radio emission flux

Frequency (MHz)

Flux density (W m⁻² Hz⁻¹)

Wavelength (m)

30GHz 3.0GHz 300MHz 30MHz 3MHz 300kHz

Type II, Type III, Spikes, etc.

Bursts (max.)

Type IV

Moving

Max. Min.

Galactic background

Quiet Sun

Slowly varying component

Storms
Present solar radio heliograph

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Frequency</th>
<th>Time resolution</th>
<th>Frequency resolution</th>
<th>Polarization</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSER</td>
<td>0.4-2.0GHz 2.0-15.0GHz</td>
<td>25ms 206ms</td>
<td>25MHz 25MHz</td>
<td>R,L</td>
<td>2016</td>
</tr>
<tr>
<td>NoRH</td>
<td>17GHz 34GHz</td>
<td>100ms 100ms</td>
<td>33.6MHz</td>
<td>R,L</td>
<td>1984</td>
</tr>
<tr>
<td>SSRT</td>
<td>5.70GHz</td>
<td>100ms</td>
<td>-</td>
<td>-</td>
<td>1996 Upgrade</td>
</tr>
<tr>
<td>NRH</td>
<td>150-450MHz</td>
<td>100ms</td>
<td>10 freqs 0.7MHz</td>
<td>-</td>
<td>1987 Upgrade</td>
</tr>
<tr>
<td>GRAPH</td>
<td>40-150MHz</td>
<td>256ms</td>
<td>1MHz 1 freq</td>
<td>-</td>
<td>1997</td>
</tr>
</tbody>
</table>
Present solar radio imaging telescope

1. Ultra-wide Band: 0.40-15.0GHz
2. High resolution:
 Spatial, 1.4-51.6”,
 temporal, 25-200ms,
 frequency, 25MHz.
3. High-speed spectral imaging: 584, imaging with ~200ms
4. Dual-circular polarization: L & R
Present solar radio imaging telescope

SSRT

NoRH

2020/7/5
Present solar radio imaging telescope

Gauribidanur Radio Heliograph

NRH

2020/7/5
Main Specification

- Frequency: 30MHz－240MHz
- Antenna: 100 LPDA antenna
- Longest Baseline: 3000m
- Frequency Resolution: 1MHz～5MHz
- Temporal Resolution: 100ms
- Spatial Resolution: 1.7’ @240MHz－14.0’ @30MHz
- Polarization: I、Q、U、V
Frequency: 30MHz—240MHz

- Solar radio emissions below 150MHz locate the area from 1 to 5 Rs, where the solar events including CME, non-thermal particle and solar wind are produced and accelerated, it is crucial to systematically monitor this area.
- Covering the full frequency band that can be observed on the ground with the Daocheng Circular Array together, the overlap frequency can be used to mutually testified.
Antenna

- LPDA, Most used and mature;
- Based on the simulations, 100 antennas are enough to get good images;
- Simple mechanism, cheap.
Polarization: I, Q, U, V

- For crossed linearly polarized feeds
 \[v_{pp} = \frac{1}{2} g_{ip} g_{kp}^*(I + Q \cos 2\chi + U \sin 2\chi), \]
 \[v_{pq} = \frac{1}{2} g_{ip} g_{kq}^*((d_{ip} - d_{kq}^*)I - Q \sin 2\chi + U \cos 2\chi + jV), \]
 \[v_{qp} = \frac{1}{2} g_{iq} g_{kp}^*((d_{kp}^* - d_{iq})I - Q \sin 2\chi + U \cos 2\chi - jV), \]
 \[v_{qq} = \frac{1}{2} g_{iq} g_{kq}^*(I - Q \cos 2\chi - U \sin 2\chi). \]

- 4 cross-correlations can be used to measure the antenna polarization performance;
- Decrease the crosstalk requirement of antenna polarization;
- For the signal with polarization unknown, 4 cross-correlations can be used to measure the full Stokes parameter, I, Q, U, V.
System Composition

- 100 LPDA;
- Calibration unit (124 LPDA), also used as spectrometer;
- 124 LPDA, beam-forming.
Array Configuration

- Design principle: UV coverage, Beam Characteristic, Image quality, Engineering Implementation;

2020/7/5

URSI GASS 2020
Array Design

- Fully take advantage of the present location and condition.
Antenna Design

- Antenna: LPDA
- Frequency: 30—240MHz
- Polarization: Dual-linear
- Gain: ≥5dB (50MHz以上)
- VSWR: ≤2.5
- Right ascension: -95° ~ +95°
- Decline: -30° ~ +30°

L × W × H = 3.0m × 3.0m × 3.0m, much smaller than the half-wavelength antenna

2020/7/5
Antenna receiver design

- Frequency: 30MHz ~ 240MHz
- LNA NF: < 1.5dB
- IF band: ~100MHz
- Isolation: ≥70dB
- Flatness: ±1.5dB
- Attenuator: 30dB, adjustable
Digital Receiver Design

- **AD Acquisition**: AD, BF filter, Fringe stop, 2bit quantization, Delay compensation.
- **Synchronization Module**: Sampling clock.
- **Correlator module**: 4 correlator, Cos output, Sin output.
Monitoring system
Data Processing Unit Design

1. Storage server
2. Monitor
3. HP computing server
4. Harddisk array
5. Tape library
Calibration Unit Design

- 124 LPDA, 16 groups;
- 7 antenna summing, improve gain;
- Without tracking.
MUSER OS

d-10-145-200-28:bin yyh$./museros
Environment file: /Users/yyh/museros/resource/xml/system.xml

Version 1.0.0-REL (r1)
Compiled on: Wed 2016/2/8 12:39:00 UTC
Current IPython Version: 4

Muser <1>:
Observation Mode

<table>
<thead>
<tr>
<th>Order</th>
<th>Observation Mode</th>
<th>Description</th>
<th>Temporal</th>
<th>Detection Area</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal Obs mode</td>
<td>Full frequency band, full time</td>
<td>second</td>
<td>0-5R⊙</td>
<td>30MHz-240MHz</td>
</tr>
<tr>
<td>2</td>
<td>Frequency Selection mode</td>
<td>Frequency selection</td>
<td>second</td>
<td>0-5R⊙</td>
<td>30MHz-240MHz, Certain Frequency</td>
</tr>
<tr>
<td>3</td>
<td>Night Obs mode</td>
<td>Observe radio source for calibration and difference sciences</td>
<td>second</td>
<td>Radio sources</td>
<td>30MHz-240MHz</td>
</tr>
</tbody>
</table>
Data Archive

<table>
<thead>
<tr>
<th>Level</th>
<th>Data name</th>
<th>Description</th>
<th>Format</th>
<th>Time resolution</th>
<th>Data Volume (MB)</th>
<th>Online or not?</th>
<th>Produced by data center?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Image raw data</td>
<td>Raw output, visibility, time, spectrum</td>
<td>Self-define</td>
<td>1 min</td>
<td>2TB</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>Spectral raw data</td>
<td>Raw output, time, spectrum</td>
<td>Self-define</td>
<td>Each min</td>
<td>1GB</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Standard image format</td>
<td>Normal data format, time, visibility</td>
<td>FITS</td>
<td>5 min</td>
<td>1GB</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Image production</td>
<td>Customer data, time, solar radio image</td>
<td>FITS</td>
<td>5 min</td>
<td>3.6GB</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Spectral production</td>
<td>Customer data, time, spectrum</td>
<td>FITS</td>
<td>Each min</td>
<td>1GB</td>
<td>Yes</td>
<td>否</td>
</tr>
</tbody>
</table>

2020/7/5

URSI GASS 2020
Thanks!