EMERALD
ElectroMagnetic imaging for a novel genERation of medicAL Devices

Performance assessment of microwave tomography and radar imaging using an anthropomorphic brain phantom

Olympia Karadima, Navid Ghavami, Ioannis Sotiriou, Panos Kosmas
King’s College London, London, UK

Funded by:
EPSRC and

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 764479
Motivation

Current imaging techniques (MRI, CT scans)
- Expensive
- Time consuming

Microwave imaging (MWI)
- Quick, safe and bed-side diagnosis
- User friendly design
- Cost effective

Applications in medical imaging devices
- Breast cancer detection
- Differentiation and detection of brain stroke

Microwave tomography
Estimation of the spatial distribution of dielectric properties in a region of interest by solving an electromagnetic inverse scattering problem

Radar imaging
Finds the solution to a simpler problem of discovering the scattering map based on contrast amongst the dielectric properties
Outline

• Background and problem statement
• Related work
• Methodology
• Experimental configuration
• Results
• Conclusions and future work
Strong and robust imaging algorithms

DBIM-TwIST tomography algorithm[1]
- Permits accurate reconstruction of phantom’s internal dielectric properties
- Can distinguish between h- and i-strokes

Huygens based radar algorithm [2]
- Does not require matrix generation and inversion
- Its application is not limited to certain known geometries
- It has shown promising results in previous research on breast and skin cancer detection

Hardware characteristics

- Increase the penetration depth into the lossy tissues
- Secure adequate spatial resolution images

Experiment characteristics

- Multi-layer anthropomorphic model of the head

Antennas operating below 2 GHz

Gel-based head phantom
Related work

Multiple prototypes for h-stroke detection exist, but no MWT prototypes for differentiation between h-stroke and i-stroke in a wide frequency range.\cite{1-7}

Challenges:
- High heterogeneity of the human body\cite{8}
- Non-linear solution\cite{9} \(\text{DBIM-TwIST}^{[1]}\)
- Non-unique solution\cite{9}

Optimal characteristics for a MWT prototype:
- Number of antennas: 24\cite{10}
- Optimal frequency range: 0.6–1.5 GHz\cite{11}
- Matching medium permittivity: 10-40\cite{11}

Reconstructed real part of the complex permittivity for h-stroke, 25% i-stroke and 50% i-stroke\cite{12}
Methodology

DBIM-TwIST algorithm

DBIM iterative approach
1. Approximating the non-linear integral equation via the Born approximation at each iteration

\[
E_{\alpha}(r_n, r_m) = E(r_n, r_m) - E_b(r_n, r_m) = \omega^2 \mu \int_V G_b(r_n, r) E_b(r, r_m) (\epsilon(r) - \epsilon_b(r)) dr
\]

2. Estimated Green’s function for the background medium

\[
G_b(r_n, r) = \frac{i}{\omega \mu} E_b(r, r_n)
\]

3. Discretize integral equation

\[
E_{\alpha}(r_n, r_m) \approx i \omega \int_V E_b(r, r_m) E_b(r, r_n) O(r) dr
\]

\[
b(\omega) = A(\omega) \alpha
\]

4. Solve the non-linear problem iteratively and update background properties

\[
\epsilon_{bi+1} = \epsilon_{bi} + \hat{\alpha}_{i+1}
\]

DBIM-TwIST algorithm

Solves the linear problem at each DBIM iteration as a linear inverse problem.

Splitting of the matrix in a two step iterative equation:

\[
x_{t+1} = (1 - \alpha)x_{t-1} + (\alpha - \beta)x_t + \beta \Gamma_\lambda(x_t)
\]

\[
\Gamma_\lambda(x) = \Psi_\lambda(x + A^T(y - Ax))
\]

Next solution depends the current solution as well as previous solution.
Methodology

Huygens based radar algorithm

Let us consider an object in free space:

• the external cylinder is characterized by a low dielectric constant
• the internal cylinder is characterized by a higher dielectric constant

Goal: Identifying the presence and location of the inclusion by using only the field E_{nm} measured outside the cylinder

The field inside the cylinder is reconstructed using superimposition of the fields radiated by the N observation points:

$$E_{\text{HP}}(\rho, m, f) = \sum_{n=1}^{N} E_{nm}(f) G(k|\rho_n - \rho|)$$

Resulting normalized intensity calculated through summing contributions from all receiving positions (m) and all frequency points (l):

$$I_{\text{HP}}(\rho) = \sum_{m=1}^{M} \left[\sum_{l=1}^{L} E_{\text{HP}}(\rho, m, f_l) \right]^2$$
Methodology

Experimental configuration

Tomography setup
8-transceiver array

Radar setup
2 rotating antennas acting as Tx and Rx

Spear antenna
18.25 mm by 28.42 mm FR-4

Triangular antenna
12 mm by 15 mm FR-4
Methodology

Experimental configuration

Concentrations of materials of human tissue mimicking phantoms

<table>
<thead>
<tr>
<th>100 ml phantoms</th>
<th>Water</th>
<th>Gelatine powder</th>
<th>Kerosene</th>
<th>Oil</th>
<th>Propanol</th>
<th>Surfactant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>60 ml</td>
<td>11 gr</td>
<td>13 ml</td>
<td>13 ml</td>
<td>2.5 ml</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Blood/CSF</td>
<td>80 ml</td>
<td>16 gr</td>
<td>-</td>
<td>-</td>
<td>3 ml</td>
<td>1 ml</td>
</tr>
</tbody>
</table>

Dielectric properties of tissue mimicking phantoms at 1 GHz

<table>
<thead>
<tr>
<th></th>
<th>ε′</th>
<th>ε″</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>41.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Blood/CSF</td>
<td>62.3</td>
<td>0.56ε′</td>
</tr>
</tbody>
</table>

Anthropomorphic head model and the preparation stages
Experimental Results

DBIM-TwIST results

Scattered signal difference at 0.7 GHz

Reconstructed ε' using triangular antennas

URSI GASS 2020
Experimental Results

Huygens based radar results

S-parameter magnitude (dB) plot for different antenna distances

Intensity images of the phantom before and after image adjusting

(axis are in cm)
Conclusions and future work

Conclusions:
1. Target can be located through subtraction between “with-target” and “without-target” phantoms.
2. Both algorithms are capable of detecting and localizing the blood mimicking target in its approximate position.
3. Triangular antennas perform better with tomography while spear antennas produce better images with radar imaging.

Future work:
1. Increasing complexity and inhomogeneity of the head models for more realistic representation.
2. Development of a hybrid image processing algorithm, combining the strongest features of both DBIM-TwIST and Huygens methods.

2007.