Statistical model for MIMO propagation channel in cavities and random media

Gabriele Gradoni(1), Martin Richter(1), Sendy Phang(1), Sirio Belga Fedeli(2), Ulrich Kuhl(3), Olivier Legrand(3), Akira Ishimaru(4)

(1) University of Nottingham, Nottingham, University Park, UK
(2) King’s College London, London, UK
(3) Université Côte d’Azur, Nice, France
(4) University of Washington, Seattle, USA
Introduction and motivation

• Determine the channel capacity of a MIMO interconnect in a cavity
• Consider noisy fields as a proxy for information transfer
• Statistical theories necessary to obtain noisy transfer functions.
• Impedance based formalism used: random coupling model
• Channel capacity distribution generated numerically
• Dependence on average loss parameter critical.
Example, small package antennas communicate within a resonant environment. How do we model the channel transfer functions?

\[H = ? \]

- PCB scattering
- Multiple resonances
- Losses
- Antenna efficiency
Linear relation between transmitted \((x)\) and received \((y)\) signals \(y = Hx + n\)

Channel transfer matrix \(H\)

\[
\begin{bmatrix}
 h_{11} & \cdots & h_{1T} \\
 \vdots & \ddots & \vdots \\
 h_{R1} & \cdots & h_{RT}
\end{bmatrix}, \quad h_{ij} \in C
\]
Multi-antenna communications in a box

Transfer function defined between port quantities at the antenna terminals

\[y = Hx \]

\[V_T = H V_T \]

\[Z_{cav} = \begin{bmatrix} Z_{TT} & Z_{TR} \\ Z_{RT} & Z_{RR} \end{bmatrix} \]
Transfer function defined between port quantities at the antenna terminals

\[y = Hx \]

\[V_R = HV_T \]

- Transfer matrix involves *sums* and *products* of impedance matrices.
- Information theoretic \(H \) takes a simplified form for uncoupled MIMO channels.
- Leverage on RMT model of impedance matrix in **irregular cavities** – the Random Coupling Model.
MIMO channel transfer matrix in resonant cavities

For a linear time invariant multi-port system

\[H = \frac{e^{-j\phi}}{R_r} C_T^{-1/2} Z_{TR} C_R^{-1/2} \]

\[C_T = \frac{\Re\{Z_{TT}\}}{R_r} \]

\[C_R = \frac{\Re\{Z_{RR}\}}{R_r} \]

Impedance matrix of antennas radiating inside the cavity (cav):

\[Z_{cav} \]

Impedance matrix of antennas radiating in free-space (rad):

\[Z_{rad} \]
Random Coupling Model (RCM): a Random Matrix Theory model for cavity impedance matrix

\[Z^{cav} = i \text{Im}(Z^{rad}) + \left[\text{Re}(Z^{rad}) \right]^{1/2} \cdot \xi_\alpha \cdot \left[\text{Re}(Z^{rad}) \right]^{1/2} \]

Coupling coefficients are GRVs

\[\left[\xi_\alpha \right]_{ps} \approx -\frac{i}{\pi} \sum_{m=1}^{M} \frac{\varphi_{pm} \cdot \varphi_{sm}}{k_0^2 - k_m^2} + i\alpha \]

RMT random spectrum:
Generated by eigenvalues of matrices from the Gaussian Orthogonal Ensemble (GOE).

Average loss parameter:
Measures the average Q-width of a resonant mode relative to average mode spacing \(\Delta k^2 \).

\[\alpha = \frac{k^2}{Q \Delta k^2} = \frac{B_Q}{\Delta k^2} \]

GG et al. Wave Motion, 51-4, pp. 606-21, 2014
PDF of the normalized cavity impedance

An example of Monte Carlo computation...

\[z \approx [\xi_\alpha]_{11}; \quad \xi_\alpha = \left[\text{Re} \left(Z^{\text{rad}} \right) \right]^{-1/2} \cdot \left[Z^{\text{cav}} - i \text{Im} \left(Z^{\text{rad}} \right) \right] \cdot \left[\text{Re} \left(Z^{\text{rad}} \right) \right]^{-1/2} \]

High loss: Gaussian; zero-loss: Lorenzian

GG et al. Wave Motion, 51-4, pp. 606-21, 2014
Each constitutive impedance of the channel transfer function can be treated with the RCM

\[H = \frac{e^{-j\phi}}{R_r} C_T^{-1/2} Z_{TR} C_R^{-1/2} \]

RCM

\[
Z_{TT}^{cav} = \text{Im} \left(Z_{TT}^{rad} \right) + \left[\text{Re} \left(Z_{TT}^{rad} \right) \right]^{1/2} \xi_\alpha \left[\text{Re} \left(Z_{TT}^{rad} \right) \right]^{1/2} \\
Z_{TR}^{cav} = \left[\text{Re} \left(Z_{TT}^{rad} \right) \right]^{1/2} \xi_\alpha \left[\text{Re} \left(Z_{TR}^{rad} \right) \right]^{1/2} \\
Z_{RT}^{cav} = \left[\text{Re} \left(Z_{RR}^{rad} \right) \right]^{1/2} \xi_\alpha \left[\text{Re} \left(Z_{TT}^{rad} \right) \right]^{1/2} \\
Z_{RR}^{cav} = \text{Im} \left(Z_{RR}^{rad} \right) + \left[\text{Re} \left(Z_{RR}^{rad} \right) \right]^{1/2} \xi_\alpha \left[\text{Re} \left(Z_{RR}^{rad} \right) \right]^{1/2}
\]
High average losses \(\alpha > 1 \) yield

\[
Z_{TT} \approx Z_{TT}^{\text{rad}}, \quad Z_{RR} \approx Z_{RR}^{\text{rad}}.
\]

and

\[
\mathbb{R}\{\xi_{\alpha,(c)}\}, \mathbb{I}\{\xi_{\alpha,(c)}\} \sim \mathcal{N}_N \left(0, \frac{1}{\sqrt{2\pi \alpha}} \mathbf{I} \right)
\]

whence the Gramian matrix \(\mathbf{H} \mathbf{H}^\dagger \approx \xi_\alpha \xi_\alpha^\dagger \)

takes the complex Wishart matrix form

\[
\mathbf{H} \mathbf{H}^\dagger \sim \mathcal{CW}_{NT} \left(N_R, \sqrt{\frac{2}{\pi \alpha}} \mathbf{I} \right)
\]
Eigenvalue distribution of the channel transfer matrix

Predicted by Marchenko-Pastur (MP) law

\[f_\beta(\lambda) = \left(1 - \frac{\alpha}{\beta}\right)^+ \delta(\lambda) + \frac{\sqrt{(\lambda - a)^+} \sqrt{(b - \lambda)^+}}{2\pi \lambda \left(\frac{b}{\alpha}\right)} \]

with

\[\beta = \frac{N_T}{N_R}, \quad (z)^+ = \max(0, z) \]

\[\langle \lambda \rangle \sim \frac{\beta}{\alpha}, \quad \alpha > 1. \]
Channel capacity distribution function at variable losses

\[C = \log_2 \left(\det \left(\mathbf{I} + \frac{\rho}{N_T} \mathbf{H} \mathbf{H}^\dagger \right) \right) \]

\[C = \sum_{n=1}^{N_C} \log_2 \left(1 + \frac{\rho}{N_T} \lambda_n \right) \]
Conclusion

• Physics based model of information theoretic transfer function found

• Model for MIMO systems operating in complex resonators/environments

• Radiation resistance becomes a random matrix – coupling with ergodic cavity eigenmodes

• Channel transfer matrix universally depends on a loss factor

• Channel capacity distribution calculated from Gramian eigenvalue distribution

• Results relevant in calculations of outage probability within real life electromagnetic environments
Thank you for your attention

Acknowledgments

The Authors gratefully acknowledge the fruitful discussions with the Nottingham WAMO members, as well as with F. Mortessagne (InPhyNi, Nice). Enlightening discussions with J. Nossek (Universidade Federal do Ceará, Fortaleza); D. Savin (Brunel University of London); Y. V. Fyodorov (King’s College of London), are also acknowledged.