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Introduction. Characterization of HF stochastic 

transionospheric channel of propagation

1. A. A. Bitjukov, V. E. Gherm, N. N. Zernov, “On the solution of Markov’s parabolic equation for the second order spaced

frequency and position coherence function,” Radio Science, 37, 4, 2002, pp. 1-9, RS1066, doi: 10.1029/2001RS002491.

2. 2. A. A. Bitjukov, V. E. Gherm, N. N. Zernov, “Quasi-classic approximation in Markov’s parabolic equation for spaced

position and frequency coherency,” Radio Science, 38, 2, 2003, pp. 1-6, doi: 10.1029/2002RS002714.

The technique of Markov parabolic equations for the moments of stochastic field is one of the classical methods 

applied to solve the problems of wave propagation in random media that have been analyzed in a number of studies. 

The Markov parabolic equations allow for employing the quasi-classic approximation, which was first introduced in 

our papers [1, 2] for the case of the two-frequency two-position coherence function. This technique permits 

constructing an asymptotic solution for an arbitrary analytic model of the medium fluctuations.

While propagating through the ionosphere with electron density irregularities, transionospheric radio signals may 

experience fluctuations. The moments of the random components of the field are commonly employed to 

characterize its stochastic properties.

In this paper, the numerical technique based on the quasi-classic approximation with complex-valued ray

paths is presented for solving the Markov parabolic equation for the symmetric second order two-frequency

and two-position coherence function of the high-frequency field propagating through a stochastic

transionospheric channel.
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Markov equation for coherence function 

𝜕𝐹

𝜕𝑧
+
𝑖𝑘𝑑

2𝑘1𝑘2
𝛻𝑇
2𝐹 +

𝑘1𝑘2

8
𝐷𝜀 𝝆, 𝑧 𝐹 = 0 (2)

Here 𝐴𝜀 𝝆, 𝑧 and 𝐷𝜀 𝝆, 𝑧 are the effective transversal to the line of sight correlation and structure 

functions of the fluctuations of dielectric permittivity; 𝝆 is the 2D difference spatial variable in the 

transversal plane, 𝑧 is the coordinate along the line of sight; 𝑘1 and 𝑘2 are the wavenumbers, and 𝑘𝑑 =
𝑘1 − 𝑘2. It is also assumed that the derivatives in the transversal central variables, defined by the 

characteristic scales of the background ionosphere, are negligibly small. 

Equation for the symmetric second order spaced position and frequency coherence function Γ2 𝝆, 𝑧 of 

the complex amplitudes of the monochromatic waves propagating through the fluctuating medium with 

non-homogeneous background along the line of sight as follows

𝜕Γ2
𝜕𝑧
+
𝑖𝑘𝑑
2𝑘1𝑘2

𝛻𝑇
2Γ2 +
𝑘𝑑
2

8
𝐴𝜀 0, 𝑧 Γ2 +

𝑘1𝑘2
8
𝐷𝜀 𝝆, 𝑧 Γ2 = 0. (1)

New unknown function 𝐹 𝝆, 𝑧 is introduced according to the following relation:

Γ2 𝝆, 𝑧 = 𝐹 𝝆, 𝑧 𝑒𝑥𝑝 −
𝑘𝑑
2

8
 0
𝑧
𝐴𝜀 0, 𝑧′ 𝑑𝑧′

So that the final equation for further investigation is:
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Complex valued quasi-classic equations

The formal transition from equation (2) to its quasi-classic approximation is performed by tending the 

product 𝑘1𝑘2 to the infinity: 𝑘1𝑘2 → ∞. The solution to the equation (2) is sought for in the form of an 

asymptotic series expansion

The main term of the solution to equation (2) 𝐹 𝝆, 𝑧 ≈ 𝑒𝑥𝑝 𝑘1𝑘2𝜓 𝝆, 𝑧 𝑈0 𝝆, 𝑧 . (3) 

The complex-valued phase function 𝜓 𝝆, 𝑧
(complex eikonal) is governed by the eikonal equation

𝜕𝜓

𝜕𝑧
+
𝑖𝑘𝑑

2
𝛻𝑇𝜓

2 +
1

8
𝐷𝜀 𝝆, 𝑧 = 0 (4)

The zero order amplitude 𝑈0 obeys the main transport 

equation

𝜕𝑈0

𝜕𝑧
+ 𝑖𝑘𝑑 𝛻𝑇𝜓 ∙ 𝛻𝑇𝑈0 +
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2
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2𝜓 = 0. (5)

𝐹 𝝆, 𝑧 = 𝑒𝑥𝑝 𝑘1𝑘2𝜓 𝝆, 𝑧  

𝑗=0

∞
𝑈𝑗 𝝆, 𝑧

𝑘1𝑘2
𝑗
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Hamilton equations for the complex-valued eikonal equation

𝑑𝑧

𝑑𝜏
= 1

𝑑𝑝𝑧
𝑑𝜏
= −
1

8

𝜕

𝜕𝑧
𝐷𝜀 𝒓, 𝑧

𝑑𝒓

𝑑𝜏
= 𝑖𝑘𝑑𝒑

𝑑𝒑

𝑑𝜏
= −
1

8
𝛻𝑇𝐷𝜀 𝒓, 𝑧

Equations (6) determine complex-valued trajectories 𝒓 = 𝒓 𝜏 , 0 ≤ 𝜏 ≤ 𝑧,  which start at complex-valued points 0, 𝝆0
on the initial surface z = 0, where the boundary (initial) condition is stated, and arrive at the real-valued points of 

observation 𝑧, 𝝆 and are subject to the initial conditions (in the case of plane wave Γ = 1 on the initial surface, hence 

𝒑 0 = 0, 𝑝𝑧 0 = −
1

8
𝐷𝜀 𝝆0, 0 and trajectories are orthogonal to the initial surface). The starting points and trajectories 

are determined for each point of observation and for each value of the frequency difference 𝑘𝑑.

Once the complex trajectories have been constructed, the complex eikonal 𝜓 and the main amplitude 𝑈0 are found as the 

appropriate integrals along the corresponding complex valued trajectories

𝜓 𝝆, 𝑧 =  

0

𝑧

𝑖𝑘𝑑𝒑
2 𝜏 + 𝑝𝑧 𝜏 𝑑𝜏, 𝑈0 𝝆, 𝑧 = 𝑒𝑥𝑝 −

𝑖𝑘𝑑
2
 

0

𝑧

𝛻𝑇
2𝜓 𝒓, 𝜏 𝑑𝜏 =

𝐷 𝝆0, 0

𝐷 𝝆, 𝑧

 1 2

, 𝐷 𝝆, 𝑧 = 𝑑𝑒𝑡
𝜕𝝆

𝜕𝝆0
.

The general method of characteristics applied to the eikonal equation (4) produces the appropriate Hamilton equations

(6) 

(7) 

In the limiting case of a homogeneous background medium and quadratic structure function of the dielectric permittivity 

fluctuations, the technique produces the rigorous well known solution to the spaced position and frequency coherence 

function.
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Models of fluctuations and background transionospheric 

channel of propagation 

The effective transversal structure function of the dielectric permittivity 𝐷𝜀 𝝆, 𝑧 is expressed through the

effective transversal correlation function of the fractional electron density fluctuations 𝐴𝑁 𝝆 as follows

𝐷𝜀 𝝆, 𝑧 = 2 𝐴𝑁 0 − 𝐴𝑁 𝝆
𝑘𝑝𝑙
4 𝑧
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2𝑘2
2
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2 𝑧 =

)𝑒2𝑛(𝑧

𝜀0𝑚𝑒𝑐
2 𝑁 𝝆, 𝑧 =

𝛿𝑛 𝝆, 𝑧

𝑛 𝑧

𝐴𝑁 𝝆 =
𝑎𝜎𝑁
2 𝑙⊥

2𝜋2  𝑝−5 2 Γ  𝑝 − 3 2 𝛽
∙
2𝜋

𝑙⊥
𝑥2 +
𝑦2

𝛽2

𝑝−2
2

𝐾𝑝−2
2

2𝜋

𝑙⊥
𝑥2 +
𝑦2

𝛽2
.

Fractional electron 

density fluctuation

Here 𝑎 =  𝑙∥ 𝑙⊥ is the aspect ratio of irregularities with 𝑙∥ and 𝑙⊥ being the outer scales of turbulence along and 

across the magnetic field respectively, 𝜎𝑁
2 is the variance of the fractional electron density fluctuation, 𝑝 is the 3D 

spectral index, 𝛽2 = 𝑐𝑜𝑠2 𝜑 + 𝑎2𝑠𝑖𝑛2 𝜑 with 𝜑 being the angle between magnetic field and the direction of 

propagation, 𝐾𝜈 ∙ is the modified Bessel function of the second kind (Macdonald function). In this notation, 𝑥 and 

𝑦 are the Cartesian components of the transversal vector variable 𝝆, 𝑥 is directed orthogonal to the magnetic field.

Assuming the anisotropic single-slope power law spectrum of fluctuations of the electron density in the 

magnetized ionosphere, we have for the arbitrary mutual orientations of the magnetic field and line of sight 

(8) 
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Models of fluctuations and background transionospheric 

channel of propagation 

Equation (8) is valid for arbitrary anisotropy (𝑎 =  𝑙∥ 𝑙⊥) and orientation of the path of propagation (𝜑). The problem 

is generally 3D in space. However, there are limiting cases when the problem may be reduced to the 2D one.

1. Extremely anisotropic irregularities, propagation across the magnetic field  𝑎 → ∞,𝜑 =  𝜋 2 . Typical for the 

equatorial region. 𝐷𝜀 and, hence, solution do not depend on y. The problem is solved in variables 𝑧, 𝑥 .

2. Isotropic irregularities 𝑎 = 1, arbitrary direction of propagation. 𝐷𝜀 and solution depend on 𝑟 = 𝑥2 + 𝑦2. The 

problem is solved in variables 𝑧, 𝑟 .

As a background ionospheric electron density profile in the simulations, Chapman layer model is utilized

with the height of maximum of the electron density of 350 km, the characteristic scale of the layer of

ℎ𝑚=100 km, and critical frequency 𝑓𝑝𝑙 𝑚𝑎𝑥 =10 MHz. The corresponding total electron content (TEC) is

49.7 TECu.
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Figure 1. 3D plot on the ground of the coherence function for 

𝑘𝑑 = 0 and for the case of extremely anisotropic fluctuations 

𝑎 → ∞, propagation across the magnetic field 𝜑 =  𝜋 2. 

Transmission frequency 𝑓𝑐=1 GHz, 𝑙⊥=10 km, 𝜎𝑁 =0.025

Figure 2. 3D plot on the ground of the coherence 

function for the case of isotropic fluctuations 𝑎 = 1. 
Oher parameters are the same as in Fig. 1.

Anisotropy of the spatial coherence function

This is to demonstrate the anisotropy of the spatial coherence in case of anisotropic fluctuations (Fig.1) as 

compared to the isotropic case (Fig.2). In both cases the maximum coherence equal unity, then, expectedly, the 

coherence decays as the separation increases, tending to the constant value corresponding to the energy of the 

coherent component of a random field.
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Coherence function in space-frequency domain

Figure 3. Contour plot of the absolute value of the

coherence function in the domain 𝑘𝑑/𝑘𝑐 , 𝑟/𝑙⊥ .

𝑓𝑐=1 GHz, 𝑙⊥=10 km, 𝜎𝑁 =0.025

Figure 4. Contour plot of the absolute value of the 

coherence function in the domain 𝑘𝑑/𝑘𝑐 , 𝑟/𝑙⊥ . 

𝑓𝑐=400 MHz, 𝑙⊥=10 km, 𝜎𝑁 =0.025

Unlike in spatial domain (Figs 1, 2, 𝑘𝑑 = 0), where the coherence tends to the constant value, in the frequency 

domain it decays down to the small values as the frequency separation rises. The frequency bandwidth determined 

on the level 0.5 appears to be about 0.5 for the central transmission frequency 1 GHz (Fig. 3) and reduces to about 

0.2 for the lower central frequency 400 MHz (Fig. 4). In the last case the coherence tends to zero in both spatial and 

frequency domains
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Conclusions

• The earlier introduced quasi-classic technique for solving Markov equations for the 

statistical moments of the high-frequency random field, propagating through the stochastic 

transionospheric channel was presented and further discussed.

• Employing this technique, the effects of the background ionosphere and anisotropic local 

random inhomogeneities of the ionospheric electron density on the field coherence 

properties were presented and discussed.

• The quasi-classic approximation may serve as a good tool for verifying and validating 

different pure analytic or semi-analytic techniques for solving the same problem


