Wideband Interference Mitigation for Synthetic Aperture Radar Based on Variational Bayesian Inference

Yi Ding, Weiwei Fan, and Feng Zhou*

August 19th, 2020

Key Laboratory of electronic information countermeasure and simulation technology of ministry of education,
Xidian University, Xi’an, China
Outline

- Motivation
- Signal modeling and time-frequency (TF) analysis
 - Low-rank characteristics of WBI in TF domain
 - Statistical characteristics of the signal
- WBI mitigation methodology
 - Bayesian model formulation
 - Approximate variational Bayesian inference
- Experimental results
- Conclusion remarks
Motivation - Wide application of SAR

- Urban construction planning
- Ship detection
- Disaster monitoring
- Vegetation coverage survey
Motivation - Radio Frequency Interference (RFI)

- Radio frequency band become very crowded
- Complex radio environment
- SAR is more likely to contaminate by RFI for its wide frequency band
Motivation - Adverse impacts of RFI

RFI have intuitive adverse impacts on SAR imaging.
- RFI would reduce signal-to-interference-plus-noise power ratio (SINR) of SAR data
- RFI would yield inaccurate estimates of critical Doppler parameters
- RFI would abate the accuracy of feature extraction and posing a hindrance to the SAR image interpretation

It is necessary to develop interference mitigation method for SAR.
SAR RFI mitigation techniques are divided into data-driven algorithms and model-driven algorithms.

Data-driven algorithms
- design a reasonable filter
- separate the interference and useful signal in a specific domain

Deficiency:
- Large loss of signal energy
- Dependent on the quantity and quality of interference samples (as for deep learning algorithms)

Model-driven algorithms
- utilize mathematical models to characterize the SAR echoes
- optimize the model parameters under specific criteria

Deficiency:
- Heavy calculation burden
- The poor mitigation result due to the inaccuracy signal model
- The lack of robustness for different scenes
Signal modeling and TF analysis

- SAR received echo model

\[s(k) = x(k) + i(k) + n(k) \]

- WBI -- \(i(k) : CMWBI, SMWBI \)
- SAR echo -- \(s(k) \)
- Radar system noise -- \(n(k) \)

- The simplified signal model

- The energy of effective interference is much greater than that of target signal.
- Compared with the strong WBI, the target signal has a noise-like distribution.

\[s(k) = i(k) + n_x(k) \]

- The equivalent additive noise -- \(n_x(k) : n_x(k) = n(k) + x(k) \)
The signal characteristics of time and frequency domain is not incomplete.

Radar echo is time-varying nonstationary signal.

STFT tools could provide time-localized spectral information of the frequency components of a signal varying over time.

$$STFT_y(\tau, f) = \int_{-\infty}^{\infty} y(t) h(t-\tau) e^{-j2\pi ft} dt$$

$$y(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} STFT_y(\tau, f) w(t-\tau) e^{j2\pi ft} d\tau df$$

STFT is a linear invertible transformation.
The representation of SAR echo in TF domain

\[s(k) = i(k) + n_x(k) \]

Our purpose is to separate target signal and interference in TF domain.
Low-rank characteristics of WBI in TF domain

- Obviously, WBI only occupies a limited part in the TF domain.
- WBI is low-rank compared to the echo signal in the TF domain.

Low-rank matrix recovery
\[
\min_{I} \left\| S - I \right\|_p
\]

Matrix factorization
\[
I = U^H V
\]

Low-rank matrix factorization
\[
\min_{U,V} \left\| S - U^H V \right\|_p
\]

Different azimuth echoes from the measured WBI data
Signal modeling and TF analysis

- Statistical characteristics of the signal

- Gaussian distribution hypothesis is used in traditional algorithms, which means L_2-norm optimization.
- It is sensitive to non-Gaussian noise and outlier value.
- The probability density of this data is more consistent with the Laplace distribution.

\[
\begin{align*}
 l(S, I) &= - \prod_{(i,j) \in \Omega} \ln p(S - I | 0, b) \\
 &= -\frac{1}{b} \|S - I\|_1 + C
\end{align*}
\]
WBI mitigation methodology

- Bayesian model formulation
 - The TF noise has a Laplace distribution hypothesis, based on the previous analysis
 \[
 p\left(N_{ij} \bigg| 0, \sqrt{\frac{\lambda}{2}} \right) = \text{Laplace}\left(N_{ij} \bigg| 0, \sqrt{\frac{\lambda}{2}} \right)
 \]
 \[
 = \int_{0}^{\infty} \text{CN}\left(N_{ij} \bigg| 0, z_{ij} \right) \text{Exponential}\left(z_{ij} \bigg| \lambda \right) dz_{ij}
 \]
 - In general, we assume \(u_i \) and \(v_j \) obey the complex Gaussian-Gamma distribution
 \[
 u_i \sim \text{CN}\left(0, \tau_{u_i}^{-1}I \right) \quad v_j \sim \text{CN}\left(0, \tau_{v_i}^{-1}I \right)
 \]
 \[
 \tau_{u_i} \sim \Gamma\left(a_0, b_0 \right) \quad \tau_{v_j} \sim \Gamma\left(c_0, d_0 \right)
 \]
 - The Bayesian posterior model is given based on the prior assumptions of the model parameters.
 \[
 p\left(U, V, \tau_u, \tau_v, Z \big| S \right) \propto p\left(U, V, \tau_u, \tau_v, Z, S \right)
 \]
 \[
 = \prod_{(i,j) \in \Omega} p\left(s_{ij} \bigg| u_i^H v_j, z_{ij} \right) \prod_{i=1}^{Q} p\left(u_i \bigg| \tau_{u_i} \right)
 \]
 \[
 \times \prod_{j=1}^{T} p\left(v_j \bigg| \tau_{v_j} \right) \prod_{i=1}^{T} p\left(\tau_{u_i} \right) \prod_{j=1}^{Q} p\left(\tau_{v_j} \right) \prod_{(i,j) \in \Omega} p\left(z_{ij} \right)
 \]
WBI mitigation methodology

- Approximate variational Bayesian inference
 - It is difficult to solve such a complex posterior probability directly.
 - The variational Bayesian inference can be utilized to approximate the full posterior distribution.
 - General solution of variational Bayesian inference can be written as:

\[
q^*_j(\theta_j) = \frac{\exp\left(E_{i\neq j} \left[\ln p(\theta, S) \right]\right)}{\int \exp\left(E_{i\neq j} \left[\ln p(\theta, S) \right]\right) d\theta_j}
\]

- The approximate distribution and factorization results for the forward Bayesian posterior can be given as following

\[
q(U, V, \tau_u, \tau_v, Z) = \prod_{i=1}^{Q} q(u_i) \prod_{j=1}^{T} q(v_j) \times \prod_{i=1}^{Q} q(\tau_{u_i}) \prod_{j=1}^{T} q(\tau_{v_j}) \prod_{ij} q(z_{ij})
\]
Alternating iteration until convergence

- Estimation of $q(u_i)$ and $q(\tau_{u_i})$, with parameters $\Lambda_{u_i}, \mu_{u_i}, a_i, b_i$:

 $$q(u_i) = CN(u_i | \mu_{u_i}, \Lambda_{u_i}^{-1})$$
 $$q(\tau_{u_i}) = \Gamma(\tau_{u_i} | a_i, b_i)$$

 $$\Lambda_{u_i} = E[\tau_{u_i}]I + \sum_{j=1}^{T} E[z_{ij}^{-1}] E[v_j v_j^H]$$
 $$\mu_{u_i} = \Lambda_{u_i}^{-1} \sum_{j=1}^{T} S_{ij} H E[z_{ij}^{-1}] E[v_j]$$
 $$a_i = a_0 + r, b_i = b_0 + E[u_i^H u_i]$$

- Estimation of $q(v_j)$ and $q(\tau_{v_j})$, with parameters $\Lambda_{v_j}, \mu_{v_j}, c_j, d_j$:

 $$q(v_j) = CN(v_j | \mu_{v_j}, \Lambda_{v_j}^{-1})$$
 $$q(\tau_{v_j}) = \Gamma(\tau_{v_j} | c_j, d_j)$$

 $$\Lambda_{v_j} = E[\tau_{v_j}]I + \sum_{i=1}^{Q} E[z_{ij}^{-1}] E[u_i u_i^H]$$
 $$\mu_{v_j} = \Lambda_{v_j}^{-1} \sum_{j=1}^{Q} S_{ij} E[z_{ij}^{-1}] E[u_i]$$
 $$c_j = c_0 + r, d_j = d_0 + E[v_j^H v_j]$$
WBI mitigation methodology

- Substitute \(q(z_{ij}) \) with \(q(z_{ij}^{-1}) \), then estimate \(q(z_{ij}^{-1}) \), with parameters \(\mu_{z_{ij}^{-1}}, \lambda_{z_{ij}^{-1}} \):

\[
q(z_{ij}^{-1}) = \mathcal{IG}(z_{ij}^{-1} \mid \mu_{z_{ij}^{-1}}, \lambda_{z_{ij}^{-1}})
\]

- Estimation of \(\lambda \)

\[
\lambda_{z_{ij}^{-1}} = \frac{2}{\lambda}
\]

- Reconstruct interference and cancellation in time domain

\[
\hat{x}(k) = s(k) - \text{ISTFT} \left[(U^*)^H V^* \right]
\]
Experimental results

- Data description
 - C-band Sentinel-1 satellites of the European Space Agency (ESA)
 - Resolution: 5m × 20m (Range × azimuth)
 - Experimental 1. The measured SAR data is acquired by the Sentinel-1A in VH polarization mode. The mitigation results shows that the imaging applying proposed method is better than that by GoDec.
Experimental 2. The measured SAR data is acquired by the Sentinel-1B in VH polarization mode. It shows that there is some residual interference in scene and ships are blurred by WBI after applying the GoDec. However, it can be seen that WBI is well mitigated and ships are well-focused after applying the proposed method.
Experimental results

- Quantitative analysis

$$MNR = 10 \log_{10} \left(\frac{1}{N} \sum_{n=1}^{N} |I_n|^2 / \frac{1}{M} \sum_{m=1}^{M} |I_m|^2 \right)$$

N and I_n represent the number of pixels of the weak scattering area and the corresponding pixel value; M and I_m represent the number of pixels of the strong scattering area and the corresponding pixel value.

<table>
<thead>
<tr>
<th>Data</th>
<th>Original</th>
<th>GoDec</th>
<th>Proposed Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel-1A VH</td>
<td>5.49dB</td>
<td>-5.87dB</td>
<td>-10.09dB</td>
</tr>
<tr>
<td>Sentinel-1B VV</td>
<td>-7.08dB</td>
<td>-12.41dB</td>
<td>-14.90dB</td>
</tr>
</tbody>
</table>

A smaller MNR demonstrate the contrast of SAR image is stronger.
Conclusion remarks

- **Innovation**
 - Constructing a factorization model for recovery WBI.
 - Establish Bayesian model formulation, and use variational Bayesian inference for posterior probability estimation.

- **Future research**
 - Keeping find proper probability models for WBI and designing effective interference mitigation method in the future.
 - Jamming and Anti-Jamming never ends.

Thanks for your attentions!