POLARIMETRIC TWO-SCALE MODEL FOR
ROUGH SURFACE BISTATIC SCATTERING EVALUATION

Gerardo Di Martino, Alessio Di Simone, Antonio Iodice, Daniele Riccio

Department of Information Technology and Electrical Engineering
University of Naples “Federico II”
Naples, Italy
Introduction and motivation

- Microwave sea observations are of fundamental importance, since they allow retrieving parameters of the sea and of objects on the sea surface.

- In recent years the interest in GNSS reflectrometry (GNSS-R) is increasing, due to the promise of low revisit times and low costs.

- For similar reasons, low-orbit small-satellite constellations have become a hot research topic, too.

- Appropriate electromagnetic models are required to design the system, assess its performance through simulation tools, and to support the development of adequate inversion techniques.
Introduction and motivation

What surface model?
- Sea surface → Anisotropic roughness

What scattering model?
- GNSS or constellation → Bistatic scattering

What applications?
- Sea state → Specular or near specular acquisition geometry
- Object detection → Far from specular acquisition geometry
- Wide range of scattering angles
Models for scattering from natural (randomly rough) surfaces

- Approximate analytical, closed-form (SPM, GO, empirical)
- Approximate analytical/numerical (TSM, SPM2, SSA, SSA2)
- “Exact” fully numerical (MoM + Monte Carlo simulation)

TSM is widely used to model the scattering from the sea surface
Two-Scale Model (TSM)

Total NRCS = large scale roughness NRCS (computed via GO) + small scale roughness NRCS (computed via SPM)

GO dominates at low incidence angles
SPM dominates at intermediate/high incidence angles

Range of validity: union of GO and SPM ones.
no cross-pol and de-pol unless SPM term is averaged over random slopes of tilted mean plane
Average over slopes -> numerical integration!

PTSM

• Almost ten years ago the Polarimetric Two-Scale Model (PTSM) was introduced\(^1\), allowing for closed-form evaluation of the average integral, via a moderate slope approximation.

• PTSM allows accounting for cross- and de-polarisation effects actually present in measured data even when surface scattering is the only present mechanism.

• PTSM has been used to devise soil moisture retrieval schemes for bare soils\(^1\).

• Recently PTSM has been extended to the case of the anisotropic sea surface (A-PTSM)\(^2\), but in backscattering configuration only.

Extension to the case of bistatic scattering configuration is considere in this work.

Theory

Surface description

Small-scale roughness:

High-frequency part of the directional Elfouhaily spectrum

\[W_{2D}(\kappa, \varphi) = W(\kappa) \Phi(\kappa, \varphi) \]

\[W(\kappa) = \frac{\pi \alpha_m c_m}{c \kappa^4} \exp \left[-\frac{1}{4} \left(\frac{\kappa}{\kappa_m} - 1 \right)^2 \right] \]

\[\Phi(\kappa, \varphi) = 1 + \Delta(\kappa) \cos \left[2(\varphi_w - \varphi) \right] \]

\[c = \sqrt{\frac{g}{\kappa}} \left[1 + \left(\frac{\kappa}{\kappa_m} \right)^2 \right] \]

\[u^* = \sqrt{C_d} u_{10} \]

\[\alpha_m = \begin{cases} 0.01 \left[1 + \ln \left(\frac{u^*}{c_m} \right) \right] & \text{for } u^* \leq c_m \\ 0.01 \left[1 + 3 \ln \left(\frac{u^*}{c_m} \right) \right] & \text{for } u^* > c_m \end{cases} \]

\[\kappa_m = 363 \text{ m}^{-1} \]

\[c_m = 0.23 \text{ m/s} \]

\[\Delta(\kappa) = \tanh \left[0.173 + 4 \left(\frac{c}{c_p} \right)^{2.5} + a_m \left(\frac{c_m}{c} \right)^{2.5} \right] \]

\[c_p \approx u_{10}/0.84 \text{ and } a_m = 0.13u^*/c_m \]

if \(20 \text{ m}^{-1} < \kappa < 200 \text{ m}^{-1} \)

\[c \approx \sqrt{\frac{g}{\kappa}} \]

\[W(\kappa) \approx \frac{S_0}{\kappa^{3.5}} \]

\[\Phi(\kappa, \varphi) \approx \Phi(\varphi) = 1 + \Delta(\kappa) \cos \left[2(\varphi_w - \varphi) \right] \]

\[\Delta(\kappa) < \sim 0.2 \]

\[u_{10} : \text{wind velocity} \]

\[\varphi_w : \text{wind direction} \]
Theory

Surface description

Large-scale roughness:

Up-wind and cross-wind slopes s_{up} and s_{cross}: independent zero-mean Gaussian variables with σ_{up} and σ_{cross} standard deviations.

Katzberg model for $f=1.5$ GHz (GNSS)

$$
\sigma_{up0}^2 = 0.45 \left[0.00316 \cdot 6 \ln (u_{10}) \right]
$$

$$
\sigma_{cross0}^2 = 0.45 \left[0.003 + 0.00192 \cdot 6 \ln (u_{10}) \right]
$$

Evaluation for generic f:

$$
\sigma_{up,cross}^2 \approx \sigma_{up0,cross0}^2 + \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{\kappa_{cut}} \kappa^2 \cos^2 (\varphi - \varphi_w - \psi_{up,cross}) W(\kappa) \Phi(\varphi) \kappa \, d\kappa \, d\varphi
$$

$$
= \sigma_{up0,cross0}^2 + \frac{S_0}{2\pi} \left(1 \pm \frac{\Delta(\kappa_0)}{2} \right) \left(\sqrt{\kappa_{cut}} - \sqrt{\kappa_{cut0}} \right)
$$

$$
\psi_{up} = 0, \psi_{cross} = \pi/2
$$

Azimuth and range slopes s_a and s_r: correlated zero-mean Gaussian variables with σ_a and σ_r standard deviations and ρ correlation coefficient.

$$
\sigma_a^2 = \sigma_{cross}^2 \cos^2 \varphi_w + \sigma_{up}^2 \sin^2 \varphi_w
$$

$$
\sigma_r^2 = \sigma_{up}^2 \cos^2 \varphi_w + \sigma_{cross}^2 \sin^2 \varphi_w
$$

$$
\rho = \frac{1}{2} \sin 2\varphi_w \frac{\sigma_{cross}^2 - \sigma_{up}^2}{\sigma_r \sigma_a}
$$
Theory

Bistatic A-PTSM

1) Compute tilted surface’s polarimetric covariance matrix via SPM in terms of the local incidence ϑ_{li} and scattering ϑ_{ls}, φ_{ls} angles, and of rotation angles β_i and β_s of incidence and scattering planes.

2) Express ϑ_{li}, ϑ_{ls}, φ_{ls}, β_i and β_s in terms of global incidence ϑ_i and scattering ϑ_s, φ_s angles and of local surface slopes s_x and s_y.

3) Second order expansion of tilted surface’s covariance matrix around $s_x = 0$ and $s_y = 0$.

4) Averaging tilted surface’s NRCS and other entries of the covariance matrix over s_x and s_y by using:

 $< s_x > = < s_y > = 0, \quad < s_x^2 > = \sigma_x^2, \quad < s_y^2 > = \sigma_y^2, \quad \text{and} \quad < s_x s_y > = \rho \sigma_x \sigma_y$

Expressions for ϑ_{li} and β_i are already available, while those for ϑ_{ls}, φ_{ls} and β_s are an original contribution of this work.
Theory

Covariance matrix elements

\[
\langle R_{pq,rs}^{SPM}(\vartheta_i, \vartheta_s, \varphi_s; s_x, s_y) \rangle_{s_x,s_y} \approx R_{pq,rs}^{SPM}(\vartheta_i, \vartheta_s, \varphi_s; 0, 0) + \\
+ D_{2,0}^{pq,rs} \sigma_x^2 + D_{0,2}^{pq,rs} \sigma_y^2 + D_{1,1}^{pq,rs} \rho \sigma_x \sigma_y
\]

\[
\kappa_y = -k \sin \vartheta_s \sin \varphi_s
\]

\[
\kappa_x = -k \sin \vartheta_s \cos \varphi_s + k \sin \vartheta_i
\]

\[
\bar{\kappa} = \sqrt{\kappa_x^2 + \kappa_y^2}
\]

\[
\bar{\varphi} = \arctan(\kappa_y / \kappa_x)
\]

Expansion coefficients

\[
D_{k,n-k}^{pq,rs} = \frac{1}{n!} \binom{n}{k} \partial^n R_{pq,rs}^{SPM} |_{s_x=s_y=0}
\]

Bragg coefficients

\[
F_{hh} = \frac{\varepsilon_r - 1}{\varepsilon_r} \cos \varphi_s \\
\times \left(\cos \vartheta_s + \sqrt{\varepsilon_r - \sin^2 \vartheta_s} \right) \left(\cos \vartheta_i + \sqrt{\varepsilon_r - \sin^2 \vartheta_i} \right)
\]

\[
F_{lv} = \sin \varphi_s \left(\varepsilon_r - 1 \right) \left(\sqrt{\varepsilon_r - \sin^2 \vartheta_s} \right) \left(\cos \vartheta_i + \sqrt{\varepsilon_r - \sin^2 \vartheta_i} \right)
\]

\[
F_{vh} = \sin \varphi_s \left(\varepsilon_r - 1 \right) \left(\sqrt{\varepsilon_r - \sin^2 \vartheta_i} \right) \left(\cos \vartheta_s + \sqrt{\varepsilon_r - \sin^2 \vartheta_s} \right)
\]

\[
F_{vv} = \left(\varepsilon_r - 1 \right) \left(\sqrt{\varepsilon_r - \sin^2 \vartheta_i} \right) \left(\sqrt{\varepsilon_r - \sin^2 \vartheta_s} \right) \left(\cos \vartheta_i + \sqrt{\varepsilon_r - \sin^2 \vartheta_i} \right)
\]

Standard SPM elements covariance matrix

\[
R_{pq,rs}^{SPM}(\vartheta_i, \vartheta_s, \varphi_s, 0, 0)
= \frac{1}{4} k^4 \cos^2 \vartheta_i \cos^2 \vartheta_s F_{pq}(\vartheta_i, \vartheta_s, \varphi_s) F_{rs}^*(\vartheta_i, \vartheta_s, \varphi_s) W_{2D}(\bar{\kappa}, \bar{\varphi})
\]
Results

All experiments at L band, $\vartheta_i = 45^\circ$, and $u_{10} = 10$ m/s.

- $\varphi_s = 0^\circ$, $\varphi_w = 0^\circ$
- $\varphi_s = 30^\circ$, $\varphi_w = 0^\circ$
- $\varphi_s = 60^\circ$, $\varphi_w = 0^\circ$
- $\varphi_s = 90^\circ$, $\varphi_w = 0^\circ$

Bistatic A-PTSM results are closer to the SSA2 than to the SSA1 ones.

SSA2\(^1\) considers multiple scattering (up to second order), but it requires computationally intensive numerical evaluation of fourfold integrals.

Conclusions

- Closed-form PTSM extended to the anisotropic sea surface case (A-PTSM) and to the bistatic scattering configuration

- All elements of the linear polarization polarimetric covariance matrix analytically expressed in closed form

- Reasonable agreement with SSA2, which is more accurate but computationally intensive

- For applications in which computational efficiency is important, use A-PTSM! (for instance, wind speed and direction retrieval, or, more in general, surface parameter retrieval).

- Extendable to the case of agricultural anisotropic soil surfaces, upon appropriate modeling of the roughness
THANK YOU FOR YOUR ATTENTION!

Gerardo Di Martino
Department of Information Technology and Electrical Engineering,
University of Naples “Federico II”, Naples, Italy
E-mail: gerardo.dimartino@unina.it
Website: https://www.docenti.unina.it/gerardo.dimartino