S. Chakraborty*1, J. M. Ruohoniemi1, J. B. H. Baker1, S. M. Bailey1, R. A. D. Fiori2, and K. A. Zawdie3

1Center For Space Science and Engineering Research, Virginia Tech, Blacksburg, USA
2Geomagnetic Laboratory, Natural Resources Canada, Ottawa, Ontario, Canada
3US Naval Research Laboratory, Washington DC, USA
Outline

• Introduction & Motivation
 – Characterizing ionospheric Sluggishness during solar flare

• Dataset & Methodology
 – Riometers & SuperDARN HF radars
 – Alternative definition of ionospheric Sluggishness.

• Results

• Discussion and Conclusion
Introduction: Solar Flare, SWF & Sluggishness

- **Solar Flares**: Sudden enhancement of solar EUV & X-rays.
- **Short-Wave Fadeout (SWF)**: Sudden disruption in HF radio waves traveling through ionosphere in response to a solar flare. One of the following two features are explored in this study:
 - **Absorption**: Increased attenuation of HF signals due to sudden enhancement in ionospheric electron density.
 - **Sluggishness**: Delay in ionospheric response to change in solar flux.

SDO AIA Observations
Left to right
94,331,171 nm & HMI

SDO EVE Observations
Left to right
9.4 − 33.9 nm

Estimation of HF Absorption Using DRAP2 Model
Introduction: What is Ionospheric Sluggishness?

- **Sluggishness** is the time delay between maximum electron density in the ionosphere following the time of maximum flux during a solar flare.

\[\delta = T_{n_e}^{max} - T_{I_\infty}^{max} \]

- Sluggishness depends on latitude, longitude, and height of the ionosphere [Appleton, 1953] and redefine measured sluggishness as time delay between maximum HF absorption following the time of maximum flux

\[\bar{\delta} = T_{\beta}^{max} - T_{I_\infty}^{max} \]
Introduction: Previous studies & our objectives

- Inversely proportional to electron density and recombination rate (Appleton, 1953).
- Sluggishness provides information about ionospheric electron density and effective recombination coefficient (α_{eff}), where (α_{eff}) is controlled by atmospheric anions and heavier positive ions (cluster ions).
- Varies linearly with solar zenith angle (Basak et al., 2013).
- Only considered soft X-ray peak time as reference to estimate sluggishness.
- Complicated variation with height (Palit et al., 2017).
- All previous observational studies have done using VLF and reported a typical value of sluggishness 3-10 minutes (e.g. Zigman et al., 2007).
- Objectives, 1) use HF instruments to study ionospheric sluggishness, 2) demonstrate soft X-ray peak time can be used as reference, and 3) do a validation of the theory by observations.
Relative Ionospheric Opacity Meter (Riometer)

• Relative Ionospheric Opacity Meter (Riometer): A passive radio receiver which provides information about HF absorption in the ionosphere by measuring variations in cosmic radio noise.

Ottawa Riometer response to a solar flare on 2015-3-11
In this study, we used riometer and SuperDARN data from stations showed in the map.
Alternative Methods to Estimate Sluggishness

- We defined sluggishness as the time difference between peak slope in these two curves:
 \[\bar{\delta}_s = T_{\beta \text{slope max}} - T_{I_{\infty \text{slope max}}} \]

- Sluggishness as the time delay in solar X-ray flux which produces maximum correlation between in these two curves:
 \[\bar{\delta}_c = \max_{\delta} \rho\left[\beta, I_{\infty \delta} \right] \]

Why do we need alternative methods?
- Not all the events produces good observational data.
- Due to dynamic range, SuperDARN radars undergo a flat peak (saturation effect) during a solar flare event (example next slides).
Ionospheric Sluggishness: Recorded in SuperDARN

- An example showing ionospheric sluggishness in SuperDARN observations during a solar flare on 11th March 2015.

- We define parameter “Inverse Ground-Scatter Count” by subtracting instantaneous (flare time) ground-scatter (bottom panel) count from the background ground-scatter (top panel) count.

\[IGSC(t) = GS_{bg} - GS_{inst}(t) \]

- Example of ionospheric sluggishness in SuperDARN Blackstone radar ground scatter measurements during a solar flare event on 11 March 2015. Measured \(\bar{\delta}_s = 38 \)s and \(\bar{\delta}_c = 50 \)s
Correlation Analysis of Sluggishness ($\bar{\delta}$)

\[\bar{\delta} \] has a high positive correlation with χ, ϕ, and a negative correlation with I_{\max}^∞.

High positive correlation with χ and negative correlation with I_{\max}^∞ is due to variations in electron density.

High positive correlation with ϕ is might be due to variations in electron density and ionic chemistry [Amemiya, 1996].

Riometer measurements for C, M & X class flares between 2006-2017
Sluggishness considering Hard X-ray as reference

- Ottawa riometer measurements during a solar flare event on 11 March 2015. Comparing sluggishness measurements considering (a) soft X-ray and (b) hard X-ray as reference.

- Peak in solar radiations at different wavebands during a solar flares occurred at different times [Yanshi, 2013].

- Refer to the ionizing solar radiation waveband, corresponding to the optical depth of that waveband, where usually see the maximum absorption.
Ionospheric Sluggishness: Simulation Study on effective reaction rate coefficient (α_{eff})

- From the basic understanding of D region chemistry, defined by GPI (Gulkov-Pasko-Inan) model -

$$\alpha_{eff} = \left[\frac{(\beta - \gamma \lambda)}{n_e} + \alpha_c \frac{n_x^+}{n_e} + \alpha_d \right] = \left[\alpha_{eff}^n + \alpha_{eff}^{n_x^+} + \alpha_{eff}^{n^+} \right]$$

$$= [\text{Anionic chemistry} (10^{-11}) + \text{Cluster ion chemistry} (10^{-11}) + \text{Simple ion chemistry} (10^{-13})]$$

- From the basic understanding of sluggishness [Appleton, 1953] $\delta = \frac{1}{2n_{e}^{\text{max}} \alpha_{eff}}$

- From Zigman et al, 2007 $\alpha_{eff} = \frac{3}{8\delta \left(n_{e}^{\text{max}} - \frac{m_{\text{avg}}^{\text{max}} g \delta}{\rho ekT} \cos \chi \right)}$

- For unperturbed ionosphere $\alpha_{eff} \sim 10^{-11} - 10^{-12} m^3 s^{-1}$, Basak et al, 2013.

$\beta = \text{electron attachment rate}$
$\gamma = \text{electron detachment rate}$
$\lambda = \frac{n^-}{n_e} = \text{negative ion ratio}$
$\alpha_c^d = \text{dissociative recombination for cluster + ve ion}$
$\alpha_d = \text{dissociative recombination}$
$n_e = \text{electron, } n_x^+ = \text{+ve cluster ions, } n^- = \text{negative ion}$
$n^+ = \text{positive ions}$
Ionospheric Sluggishness: Simulation Study on effective reaction rate coefficient (α_{eff})

- Assumption – D region is one thin layer of plasma, and sluggishness in riometer measurements coming from the D region, and use the following equation to estimate α_{eff}

 $$\alpha_{eff} = \frac{3}{8\delta} \left(n_e^{max} - \frac{I_{\infty}^{max} \rho m_{avg} \delta}{pekT \cos \chi} \right)$$

- $\bar{\delta}$ shown in the figure is the mean sluggishness observed in riometer for all events for $\chi \sim 50^\circ - 60^\circ$.

- From simulation study we found α_{eff} decreases rapidly with increasing I_{∞}^{max}.

- Infer: Most likely among three types of reaction rates coefficients α_{eff}^{n-} and α_{eff}^{n+} decreases under solar energetic radiation.
Discussions

• This is the first attempt of characterization of sluggishness using riometers and SuperDARN HF radars.

• We found the measured sluggishness varies significantly with the measuring techniques. Estimation of sluggishness using the modified definition is greater than that using standard definition. **Reason:** Enhanced electron density during the peak of solar flare event than before the peak.

• Sluggishness is estimated considering peaks in soft X-ray as reference [Appleton, 1953; Ellison, 1954]. We consider hard X-ray as reference then estimation changes. **Reason:** Peak in solar radiations at different frequencies during a solar flares occurred at different times [Yanshi, 2013].

• We found α_{eff} a few orders of magnitude, typically between $10^{-11} - 10^{-15} m^3 s^{-1}$. The estimated domain matches with pervious studies [Schunk, 2009; Mitra, 1992; Zigman 2007; Palit, 2015]. **Reason:** Enhancement in electron density and in electron detachment rate under the influence of energetic radiations, changes α_{eff} [Verronen et al, 2009].
Conclusions

- Choice of ionospheric sounding technique effects the measurement of sluggishness.

- Statistical study shows sluggishness is –
 - Anti-correlated with solar EUV radiation intensity.
 - Positively correlated with latitude.

- Ionospheric effective recombination rate coefficient α_{eff} varies a few orders of magnitude, typically between $10^{-15} - 10^{-11}$ m3s$^{-1}$ with peak solar irradiance.

- Observation and simulation study infer ionospheric sluggishness might influenced by the ionic (anion and positive cluster ions) photochemistry.
Thank You!

Questions and Comments
email: shibaji7@vt.edu

Manuscript submitted to JGR: Space Physics