Novel Miniaturized Sinuous Antenna for UWB Applications

Claudio Maria Lamacchia(1), Michele Gallo(1), Luciano Mescia(2), Pietro Bia(3), Domenico Gaetano(3), Christian Canestri(3), Cosmo Mitrano(3) and Antonio Manna(3)

(1) IAMAtek s.r.l. Bari, Italy, https://www.iamatek.com
(2) Politecnico di Bari, Bari, Italy
(3) Design Solution Department, Elettronica SpA, Rome, Italy, https://www.elt-roma.com
About ELETTRONICA GROUP

INTELLIGENCE SURVEILLANCE & RECONNAISSANCE
RESM, CESM, SIGINT, ELINT, COMINT

ELECTRONIC ATTACK & SELF PROTECTION
RWR/RESM, RECM, CECM

ELECTRO OPTICAL INFRA RED
DIRCM

CYBER EW & INTELLIGENCE
OSINT, DIGITAL SPECTRUM INTELLIGENCE

PUBLIC SECURITY & LAW ENFORCEMENT
OSINT, BORDER AND AREA SURVEILLANCE, SPECTRUM INTELLIGENCE SECURITY

CUSTOMER SUPPORT
EDUCATION, OPERATIONAL SUPPORT, INTEGRATED LOGISTICS

URSI GASS 2020
Rome, Italy, 29 August – 5 September 2020
Summary

- Introduction to the Sinuous Antenna

- Sinuous Antenna Design
 - Standard Sinuous Antenna
 - Non-Conventional Cavity Backed Sinuous Antenna

- Analysis and Simulation Results
 - Performance

- Conclusions
Introduction to the Sinuous Antenna

The operation principle of the Sinuous Antenna is described in the following picture:

- Multiple folded dipoles
- Self-complementary structure → frequency independent performance
- The UWB behavior is realized by means of dipoles that resonate at adjacent frequencies
Introduction to the Sinuous Antenna

The electromagnetic sensor should have the following capabilities:

- UWB Functionality
- Controlled HPBW
- S45 Polarization
- Light Weight
- Small Dimensions
- Direction Finding Application

\[x = t \cos (-1p \alpha \sin \left(\pi \left(\frac{t}{R_p} \right) \right)) \pm \delta \]

\[y = t \sin (-1p \alpha \sin \left(\pi \left(\frac{t}{R_p} \right) \right)) \pm \delta \]

Parameters:
- \(R_s \) minimum radius
- \(R_p \) maximum radius
- \(\tau_p \) expansion factor
- \(\delta \) arm thickness
- \(\alpha \) arm angular width
Introduction to the Sinuous Antenna

4-Arm Sinuous Antenna Properties:
- 2-18 GHz
- Controlled HPBW
- S45 Polarization
- 6 cm Diameter

The goal is to lower the minimum frequency operation maintaining the same diameter considering:
- $S11 < -5 \text{ dB}$
- $\text{Gain} > -5 \text{ dBi}$
- $\text{HPBW} < 120^\circ$

Parameters:
- $R_s < t < R_p$
- R_s minimum radius
- R_p maximum radius
- τ_p expansion factor
- δ arm thickness
- α arm angular width
Free Space Sinuous Antenna – Substrate Investigation

The best choice is Rogers RT5880LZ

\[\Delta \phi = \pi \]
Free Space Sinuous Antenna – Meandering

Classical Sinuous Antenna

Meandered Sinuous Antenna

The meandering increases the electrical length of the arms introducing a cross-polarization contribution.
Free Space Sinuous Antenna – Meandering

Meandered Sinuous Antenna

Parameter:

- $R_s < t < R_p$
- R_s minimum radius
- R_p maximum radius
- τ_p expansion factor
- δ arm thickness
- α arm angular width
- x_p meander amplitude
- ξ meander number

\[
x = \begin{cases}
 \tau \cos \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) & R_s < t < R_d \\
 \tau \cos \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) \left(1 + x_p \cos \left(\xi \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) \right) & R_d < t < R_p
\end{cases}
\]

\[
y = \begin{cases}
 \tau \sin \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) & R_s < t < R_d \\
 \tau \sin \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) \left(1 + x_p \cos \left(\xi \left(-1^{\alpha} \sin \left(\pi \left(\frac{\tau}{R_p} \right) \right) \pm \delta \right) \right) & R_d < t < R_p
\end{cases}
\]
Free Space Sinuous Antenna – Meandering

HPBW on the Azimuth Plane

Classical Sinuous Antenna

Parameter:
- \(R_p \) maximum radius = 60 mm
- \(\tau_p \) expansion factor = 0.79
- \(\delta \) arm thickness = \(\pi/10 \)
- \(\alpha \) arm angular width = \(\pi/10 \)
- \(x_p \) meander amplitude = 0
- \(\zeta \) meander number = 0

Meandered Sinuous Antenna

Parameter:
- \(R_p \) maximum radius = 60 mm
- \(\tau_p \) expansion factor = 0.79
- \(\delta \) arm thickness = \(\pi/10 \)
- \(\alpha \) arm angular width = \(\pi/10 \)
- \(x_p \) meander amplitude = 0.05
- \(\zeta \) meander number = 40
Free Space Sinuous Antenna – Sharp ends

Optimized sharp ends

reduction of the sharp ends t_R [mm]
Free Space Sinuous Antenna – Sharp ends

Optimized sharp ends

For $t_R > 10$ mm the increases the gain at low frequency and the flatness in band

reduction of the sharp ends
Free Space Sinuous Antenna – Substrate

Dielectric Cylinder Loading

<table>
<thead>
<tr>
<th>d</th>
<th>εr</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁ = 5.5</td>
<td>εr₁ = 1.5</td>
</tr>
<tr>
<td>d₂ = 5</td>
<td>εr₂ = 2</td>
</tr>
<tr>
<td>d₃ = 4.5</td>
<td>εr₃ = 2.5</td>
</tr>
<tr>
<td>d₄ = 4</td>
<td>εr₄ = 3</td>
</tr>
<tr>
<td>d₅ = 3.5</td>
<td>εr₅ = 3.5</td>
</tr>
<tr>
<td>d₆ = 3</td>
<td>εr₆ = 4</td>
</tr>
<tr>
<td>d₇ = 2.5</td>
<td>εr₇ = 5</td>
</tr>
<tr>
<td>d₈ = 2</td>
<td>εr₈ = 6</td>
</tr>
</tbody>
</table>
Free Space Sinuous Antenna – Substrate Loading

Parameter:

- R_p maximum radius = 60 mm
- τ_p expansion factor = 0.79
- δ arm thickness = $\pi/10$
- α arm angular width = $\pi/10$
- x_p meander amplitude = 0.05
- ξ meander number = 40

Meandered Sinuous Antenna

Meandered Sinuous Antenna with dielectric loading
Free Space Sinuous Antenna – Substrate Loading

Reduction of the minimum working frequency from 2.9 to 1.5 GHz
Optimized Cavity Backed Sinuous Antenna

- Polyethylene (FOAM)
- Meandered Sinuous Antenna Circuit
- Dielectric Cylinder Loads
- Polypropylene-based magnetic absorber (PP1000)
- Dielectric RG5880 2mm
- PEC
Optimized Cavity Backed Sinuous Antenna

Boresight Realized Gain

Squint

HPBW

Elevation = 0°
Conclusions

✓ Introduction to the Sinuous Antenna

✓ Design
 o Substrate Investigation
 o Meandered Shape
 o Dielectric loads
 o Cavity Backed Sinuous Antenna

✓ Simulation Results
 o HPBW on the Azimuth Plane
 o S45 Boresight Realized Gain
 o Squint
Thank you for the attention!

Any questions?
Novel Miniaturized Sinuous Antenna for UWB Applications

Claudio Maria Lamacchia(1), Michele Gallo(1), Luciano Mescia(2), Pietro Bia(3), Domenico Gaetano(3), Christian Canestri(3), Cosmo Mitrano(3) and Antonio Manna(3)

(1) IAMAtek s.r.l. Bari, Italy, https://www.iamatek.com
(2) Politecnico di Bari, Bari, Italy
(3) Design Solution Department, Elettronica SpA, Rome, Italy, https://www.elt-roma.com