Comparative Study of Computational Electromagnetics Applied to Radiowave Propagation in Wildfires

Stefânia Faria¹, Mário Vala¹, Pedro Coimbra¹,³, João Felício¹,³,⁴, Nuno Leonor¹,², Carlos Fernandes¹,³, Carlos Salema¹,³ and Rafael Caldeirinha¹,²

¹ Instituto de Telecomunicações, Portugal
² Instituto Politécnico de Leiria, Leiria, Portugal
³ Instituto Superior Técnico, Lisboa, Portugal
⁴ Centro de Investigação Naval, Escola Naval, Almada, Portugal
Summary

• Introduction
• Modelling of radiowave propagation in fire
 • Fire dynamics
 • Cold Plasma Model
• Comparative study of computational electromagnetics
 • Full-stack technique
 • Transmission Line Model
 • Full-wave analysis
 • Comparative analysis
• Conclusions
Introduction

- Besides fauna and flora damages caused by wildfires, fires may also affect emergency communication systems;

- In 2017, the region of Pedrógão Grande in Portugal was affected by deadly wildfires and the Portuguese rescue communication network failed to assist forest fire victims.

- Since the 60’s decade, fire fighters have testified the radio-wave propagation fragility all around the world;
Modelling of radiowave propagation in fire

- One way to describe signal attenuation in wildfires is considering the Cold Plasma Model (CPM);
Modelling of radiowave propagation in fire

• Estimation of electron density:

\[N_e = (K_1N_a)^{\frac{1}{2}} \left[\left(1 + \frac{K_1}{4N_a} \right)^{\frac{1}{2}} - \left(\frac{K_1}{4N_a} \right)^{\frac{1}{2}} \right] \text{[m}^{-3}] \] (1)

\[K_1 = 2 \frac{g_i}{g_0} \frac{2\pi mkT^2}{h^3} e^{-\frac{eV_i}{kT}} \] (2)

\[N_a = n_0 + n_e = 7.335 \times 10^{27} \frac{\xi}{T} \text{[m}^{-3}] \] (3)
Modelling of radiowave propagation in fire

• Estimation of effective collision frequency:

\[
\nu_{\text{eff}} = \frac{8}{3\sqrt{\pi}} N \left(\frac{m_e}{2kT_e} \right)^{\frac{5}{2}} \int_0^\infty \nu^5 Q^{(m)}(\nu) e^{-\left(\frac{m_e \nu^2}{2kT_e}\right)} \, d\nu \quad (4)
\]

\[
\nu_{\text{eff}} = 7.33 \times 10^3 N_m a^2 \sqrt{T} \quad [s^{-1}] \quad (5)
\]
Modelling of radiowave propagation in fire

- Relative permittivity:

\[\varepsilon_r = \left[1 + \frac{\omega_P^2}{\omega(i\nu_{eff} - \omega)} \right] \] \hspace{1cm} (6)

\[\omega_P^2 = \frac{N_e e^2}{m\varepsilon_0} \] \hspace{1cm} (7)

\[\omega = 2\pi f \] \hspace{1cm} (8)

- Propagation constant:

\[\gamma = \alpha + j\beta = j\omega\sqrt{\mu_0\varepsilon_0\varepsilon_r} \] \hspace{1cm} (9)
Modelling of radiowave propagation in fire

- Fire Dynamics Simulator (FDS) was used to model a fire scenario of a single tree over time.

- Parameters of a 30 s simulation:
 - *Eucalyptus Diversicolor* tree
 - K=0.9%, Ca=0.82% and Mg=0.28%
 - 385 MHz plane wave normally incident
 - Volumetric mesh of 5 cm cells
 - 80 slice divisions
Comparative study of computational electromagnetics

- Results obtained from CPM model are used as input parameters to 4 different approaches:
 - Full-Stack Model (FSM);
 - Transmission Line Model (TLM);
 - Finite-Difference Time-Domain (FDTD);
 - Commercial CST electromagnetic transient solver.
Comparative study of computational electromagnetics

- Full-Stack Model (FSM)
Comparative study of computational electromagnetics

• Transmission Line Model (TLM)
 • TLM is based on impedance matching in multiple dielectric slabs, in which propagation and marching matrices are calculated, so that incident and reflected fields are considered at each unit-cell interface.
 • Total attenuation [in dB] on a per-tube analysis is in very good agreement with FSM.
 • The study of the CDF of the ROI was also performed, yielding a 2.42 dB of peak excess loss for 90% probability of occurrence, with a difference of only 0.05 dB to FSM.

• Full-wave analysis
 • Finite-Difference Time-Domain (FDTD)
 • Commercial CST electromagnetic transient solver
Comparative study of computational electromagnetics

• Comparative analysis
Comparative study of computational electromagnetics

- **Comparative analysis**

<table>
<thead>
<tr>
<th></th>
<th>Number of tubes</th>
<th>Method</th>
<th>TLM</th>
<th>CST</th>
<th>FDTD</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11} (dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>-18.95</td>
<td>-18.91</td>
<td>-18.97</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>-20.5</td>
<td>-20.65</td>
<td>-20.54</td>
<td>N/A</td>
</tr>
<tr>
<td>S_{21} (dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>-3.019</td>
<td>-3.027</td>
<td>-3.024</td>
<td>-3.094</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>-2.271</td>
<td>-2.295</td>
<td>-2.278</td>
<td>-2.337</td>
</tr>
<tr>
<td>ROI (90% prob.)</td>
<td></td>
<td></td>
<td>-2.42</td>
<td>N/A</td>
<td>N/A</td>
<td>-2.47</td>
</tr>
<tr>
<td>Computational time (s)</td>
<td>1</td>
<td></td>
<td><6</td>
<td><30</td>
<td>600</td>
<td>0.005</td>
</tr>
</tbody>
</table>

© 2020, Instituto de Telecomunicações
Conclusions

• This study clearly indicates that the effect of fire may dictate the reliability of the radio communications in critical mission applications;

• Signal attenuation in wildfires can be estimated by the cold plasma model (CPM), which was used to obtain the complex permittivity across the fire scenario;

• The complex permittivity allowed then to obtain the total attenuation of each tube on a projection plane, for four different methods.
Acknowledgment

- This work is part of the project RESCuE-TOOL (PCIF/SSI/0194/2017) and UID/EEA/50008/2019, both funded by the Portuguese government, Portuguese Foundation for Science and Technology (FCT).
Thank you