TeraFET Optimization for 100 GHz to 10 THz Operation

Xueqing Liu(1), Trond Ytterdal*(2), and Michael Shur(1)

(1) Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
(2) Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract

We optimize the THz response for Si MOS TeraFET feature sizes from 10 nm to 300 nm in the 0.1 THz to 10 THz frequency range using both the analytical THz detector model and the compact multi-segment THz SPICE models. The models include the ballistic transport which is especially crucial for short channel devices in high THz frequencies. When the load resistance and series resistances are considered, the THz SPICE model should be used for more accurate results rather than the analytical model.

1 Introduction

TeraFET plasmonic technology enabled efficient detectors of terahertz (THz) and sub-THz radiation using Si MOS [1, 2], AlGaN/GaN HEMTs [3, 4], and AlGaAs/InGaAs HEMTs [5, 6]. TeraFETs could also be used as homodyne [7, 8] or heterodyne [9, 10] detectors, ratchet detectors [11], transceivers [12, 13], frequency multipliers [14, 15], or even as THz spectrometers/interferometers [16]. Other materials systems, such as p-diamond [17], have potential for developing efficient sub-THz detectors for specific THz bands covering the entire 100 GHz to 10 THz range. As shown in this paper, such optimization requires to account for the ballistic transport or quasi-ballistic transport, loading effects, and parasitic series resistances. Two other key optimization parameters are the TeraFET gate length and the operating regime (the gate bias). Our results show that optimizing the TeraFET design for a specific THz band could make orders of magnitude difference in the detector response.

The analytical model [18, 19] provides an excellent insight in the TeraFET physics, but it does not account for the loading effect and series resistances. These issues are fully accounted for by our multi-segment THz SPICE model based on the unified charge control model (UCCM) [20, 21].

2 THz analytical and SPICE model

The analytical THz response was initially derived with assuming a small THz signal applied between the gate and the source and an open drain boundary condition [18]. Fig. 1 (a) shows such configuration for the analytical model, which gives the THz drain-to-source DC voltage response \(\Delta U \) to the THz radiation inducing the voltage \(V_c \cos \omega t \) between the gate and source

\[
\Delta U = \frac{V_c^2}{4V_{gs}} f(\omega),
\]

where \(V_{gs} = V_{gs} - V_T \) is the gate voltage swing, \(V_T \) is the threshold voltage, \(f(\omega) = 1 + \beta = \frac{1}{\sqrt{\sinh^2(\frac{2V_{gs}}{k_BT}) + \cosh^2(\frac{2V_{gs}}{k_BT})}} \),

\[
\beta = \alpha \omega \tau (1 + \omega^2 \tau^2)^{1/2}, \quad k_T' = \alpha \omega^2 \tau (1 + \omega^2 \tau^2)^{1/2}, \quad s = s_0 (1 + \exp(\frac{V_{th}}{V_{fb}})) \ln(1 + \exp(\frac{V_f}{V_{fb}})))^{1/2}, \quad s_0 = (\frac{\alpha^2 q}{m})^{1/2}, \quad V_{th} = \frac{nk_BT}{q}, \quad q \text{ is the electric charge, } k_B \text{ is the Boltzmann constant, } T \text{ is temperature, } \eta \text{ is the sub-threshold ideality factor, } m \text{ is the electron effective mass.}

To account for the series resistances at each terminal and the load resistance, the equivalent circuit used in the THz multi segment compact model [20, 21] is modified as Fig. 1 (b), where the intrinsic FET could be modelled by the channel resistance \(R_{ch} \), Drude inductance \(L_{drude} \), gate-to-source
The equations for \(R_{gh}, C_{gs} \) and \(C_{gd} \) are described in the UCCM model [22]. The Drude inductance, \(L_{Drude} = \tau R_{ch} \), where \(\tau = m \mu / q \) is the electron momentum relaxation time and \(\mu \) is the mobility, accounts for the electron inertia effect which is important for the plasmonic resonant detection [23]. The modified analytical response could be estimated as

\[
\Delta U = \frac{V_{2\text{eff}}}{4V_{gth}} f(a) \frac{1}{1 + Z_{ch} + R_s + R_d/R_L},
\]

where \(V_{gth} = V_{th} + V_{gth}/(2V_{th}) + \sqrt{\delta^2 + (V_{gth}/(2V_{th}) - 1)^2} \) is the effective gate voltage swing accounting for both above and below threshold, \(\delta \) is a transition parameter between the above and below threshold, \(V_{2\text{eff}} = |V_a - I_g R_g - I_t R_t| \) is the effective THz voltage applied on the intrinsic FET, \(I_t = V_a/(R_g + Z_3 + Z_2 + Z_1 + Z_{ch}), \)

\(Z_{ch} = Z_{ch} Z_{ae}/Z_{t}, Z_2 = Z_2 Z_{dc}/Z_{t}, Z_3 = Z_3 Z_{dc}/Z_{t}, Z_{ch} = \alpha qL/(mv), \) where \(\alpha \) is the THz frequency, \(v = \min(v_F, v_t) \), the constant \(\alpha \) is a transition parameter between the above and below threshold, \(\delta \) is a transition parameter between the above and below threshold. The mobility \(\mu \) is used to consider the ballistic transport in the THz channel. Using the modified analytical THz response expression (2) and the multi-segment SPICE model (50 segments), we first examine the effects of the ballistic transport on the THz response without considering the load resistance and series resistances. Fig. 2 shows the THz response as functions of the signal frequency and the channel length for the analytical and SPICE models, where the load resistance is set as 1 TΩ representing the open drain boundary condition. It could be seen that the ballistic mobility plays a more important role at high THz frequencies for short channel devices, while the SPICE model is affected less than the analytical model. Without the ballistic mobility, the SPICE simulation predicts a much smaller response than the analytical model especially at the resonant peaks. However, the frequency corresponding to the maximum signal and the shapes of the computed and analytical dependences are quite similar for the open circuit boundary conditions. Therefore, the analytical theory is still useful for the TeraFET optimization for the open circuit conditions, especially with the ballistic transport included.

The effects of the load and series resistances on the THz response for the analytical and SPICE models are shown in Fig. 3 and Fig. 4, respectively. Here we use realistic values for the series resistances based on 20 nm FDSOI and consider the gate length dependence for the gate resistance. The results show much larger disagreement between the analytical model and the SPICE model when a finite load resistance or realistic series resistances are applied.

Figure 2. Effects of the ballistic transport on the THz response as functions of the signal frequency and channel length for (a) analytical model and (b) SPICE model. \(V_{gth} = 0.21 \) V and \(V_a = 10 \) mV. 50-segment SPICE model is used. Ballistic mobility is included.

Figure 3. Comparison of the simulated and analytical THz response as a function of (a) THz signal frequency and (b) device channel length for \(R_L = 50 \) Ω without series resistances. \(V_{gth} = 0.21 \) V and \(V_a = 10 \) mV. 50-segment SPICE model is used. Ballistic mobility is included.

Figure 4. Comparison of the simulated and analytical THz response as a function of (a) THz signal frequency and (b) device channel length for \(R_L = 1 \) TΩ with series resistances. \(V_{gth} = 0.21 \) V and \(V_a = 10 \) mV. 50-segment SPICE model is used. Ballistic mobility is included.

\(R_{ch} + j \omega L_{Drude} \), \(Z_{sc} = 1/(j \omega C_{gs}), Z_{dc} = 1/(j \omega C_{gd}) \). For more accurate determination of the THz response, it is desirable to use the THz SPICE model with the intrinsic FET split into multiple segments and including series resistances and parasitic capacitances [20, 21], as shown in Fig. 1 (c).

For submicrometer devices, the ballistic transport becomes very important and should also be included in the model [24]. The mobility \(\mu \) considering the ballistic transport could be given by \(1/\mu = 1/\mu_0 + 1/\mu_{bal} \), where \(\mu_0 \) is the mobility without considering the ballistic transport, \(\mu_{bal} = \alpha qL/(mv), v = \min(v_F, v_t) \), the constant \(\alpha \) and Fermi velocity \(v_f \) are described in [25].
The reason could be due to the change of the boundary conditions or the different forms of the channel density in the UCCM equations and the analytical THz model. Equation (2) for the modified analytical THz response still includes the original function \(f(\alpha) \) which was derived with assuming the open drain boundary condition. Therefore, it could not accurately describe the analytical response accounting for a finite load resistance. Additionally, \(f(\alpha) \) assumes the channel density \(n = CU/q \), while the UCCM gives a more complicated dependence of the channel density on the gate voltage. The effects of the series resistance on the channel density may not be included in the analytical model. Therefore, the THz SPICE model should give more accurate results than the analytical model when the loading and resistance effects are considered.

3 THz Response optimization

The analytical and SPICE models could be used for the THz response optimization, which is to find the maximum THz response within certain ranges of the signal frequency and channel length. For each frequency in the range from 0.1 THz to 10 THz, we first calculate or simulate the response from the analytical and SPICE models at each channel length from 10 nm to 300 nm. After we obtain the maximum response at a specific channel length, we could try the next frequency value and find the maximum response as well as the corresponding channel length in the whole frequency range. Fig. 5 shows the THz response as functions of the signal frequency and channel length for the analytical model. Fig. 6 shows the extracted maximum THz frequency and the corresponding feature size in the frequency range. The load resistance and series resistances could lead to very different optimization results. When these effects are considered, the rough estimation from the analytical model should be replaced by more accurate results from the THz SPICE model.

4 Conclusion

Using the modified analytical THz response model and the compact multi-segment THz SPICE model, we perform the THz response optimization for Si MOS TeraFET with feature sizes from 10 nm to 300 nm in the 0.1 THz to 10 THz frequency range. The ballistic transport is very important for short channel devices in high frequencies and should be included in the analytical and SPICE models. When the loading effects and series resistances are considered, the
THz SPICE model must be used for the device optimization. The obtained results could be used for Si TeraFET detector design in the 100 GHz to 10 THz range.

5 Acknowledgements

The work at RPI was supported by the U.S. Army Research Laboratory Cooperative Research Agreement (Project Monitor Dr. Meredith Reed) and by the US ONR (Project Monitor Dr. Paul Maki).

References

