A multi-stage pass-band filter with ultra-compact spiral-based elements

Alessandro Cidronali, Giovanni Collodi, Matteo Lucchesi, Stefano Maddio, Giuseppe Pelosi, Stefano Selleri∗
Department of Information Engineering
University of Florence, Via di Santa Marta, 3, Florence, Italy
(alessandro.cidronali,giovanni.collodi,stefano.maddio,giuseppe.pelesi,stefano.selleri)@unifi.it
matteo.lucchesi4@stud.unifi.it

Abstract

Recently an innovative pass-band filter based on a disk with a pair of spiral slot etched has been presented in literature. Such a filter has an out-of-band steep descent of the transmission coefficient but a relatively poor insertion loss for frequencies far from the pass-band. In this contribution a multi-stage set up of these filters is proposed to ameliorate the rejected bands insertion loss. The proposed filter is still extremely compact if compared to filters with similar behavior.

1 Introduction

C-band is extensively used for many applications: 802.11xy WiFi from 4.9 to 5.7 GHz, DSRC at 5.8 GHz, WAVE protocol at 5.9 GHz, Mid-Band 5G, just to name few. Yet, the sheer number of services provided on different protocols exploiting narrowly separated bands can cause severe interference problems, especially in vehicular applications [1, 2]. Several solutions are possible, ranging from active ones, such as leakage cancellers [3, 4, 5] to passive ones, such as electronic band-gap [6, 7], or even sharp roll-off filters [8, 9, 10].

Recently a compact and uniplanar structure based on a disc resonator in microstrip technology has been presented [11]. The design of the cited filter is reported in Fig. 1. A pair of antipodal Archimedean spirals are etched inside the disc which is obtained enlarging a transmission lines of length \(w \). The structure equivalent circuit [11], depicted in Fig. 1 as well, shows a quasi-elliptical response with sharp nulls outside the pass-band, similar to [12]. The Archimedean spiral is defined according to:

\[
p(\theta) = (R - g)(1 - \alpha \theta), \text{ with } \theta \in [\theta_1, \theta_2],
\]

where \(R \) is the radius of the disc, \(g \) is the gap between the spiral and the disc edge, \(\alpha \) is a factor that controls the distance between successive turns, \(\theta_1 \) is the starting angle of the spiral, and \(\theta_2 \) is the end angle, comprehensive of \(n \) possible spiral turns.

Notwithstanding a set of parametric analysis reported in [11], which allows for tuning the band and the zeros, the filter presents an insufficient insertion loss in the rejected bands, and let the DC pass. This latter feature might indeed be valuable since DC feed of amplifier can be let through the filter, while rejection is usually important in neighboring bands which may host possibly interfering signals. The key of this paper is hence to produce two tunable stop-bands around the pass-band.

2 Filter Design

In this contribution a multistage arrangement of these filters is proposed to mitigate the low rejection in the bands neighboring the pass-band without impairing DC. Despite the final structure is an improper band-pass, it is nevertheless very effective for the coexistence of the many services which populate the C-band.

The issue stated in the introduction is best illustrated by Fig. 2b, where the filter proposed in [11] is compared to a filter with similar sharp nulls in literature [13]. Yet the size comparison in Fig. 2b clearly show drastic reduction in size of the spiral filter, whose area is less than \(1/25 \) with respect to [13].

The basic idea is that the cascading arrangement of two, or more, spiral filters, of different band-width allows to synthesize the desired position for the zeros and enhance to out-of band rejection of the resulting structure. Of course, due to the very small dimensions of the single filter, cascading a few of them still lead to a much more compact layout than that proposed in [13]. Here, the solution based
Exploiting the peculiar shape of the spiral filter response, two possible solutions for the design of a pass-band device are possible.

With reference to Fig. 4a, in the first case, two spiral elements with similar performance but with different center-frequencies are taken into consideration. They are labeled as #A and #B. The bandwidth of the two elements are conveniently overlapped, hence the resultant structure exhibit a much marked band-pass behavior. Indeed the transmission is possible only in the frequency range where both #A and #B exhibit low transmission loss. At the same time the resultant structure conserves the transmission zeros of both the element, enforcing the stop-band isolation.

A final optimization has been carried. The goals of the optimization are the lowest insertion loss at the center frequency of 5.8 GHz, the highest isolation at 5.3 GHz and 6.3 GHz, as well as the smallest dimension of the resulting design. Due to the multi-objective nature of the goals, the algorithm presented in [14, 15] has been employed.

3 Experimental Validation

With reference to Fig. 5 the design showing the best performance in simulation has been fabricated on commercial dielectric substrate ($\varepsilon_r = 10.0$, tan$\delta = 0.01$, thickness = 1.27 mm), and experimentally validated. Figure 5b shows a photo of the prototype with the components alongside the lay-out. The calculated final values of the filter parameters
are reported in Table 1. Additional information on the layout are quoted on Fig. 5a.

Finally, Fig. 6 shows the comparison between the simulations and the measurements of the proposed device. Despite a higher loss for the measured filter, probably due to the connectors, the shape of the response is quite matched. A small shift in the upper stop-band is observed, probably due to fabrication tolerance. Indeed, the two pairs of transmission zeroes within the two side stopbands are nevertheless present.

Furthermore, the signal rejection within the two stopbands is higher for the measurement in comparison to the simulations.

4 Conclusions

A multi-stage filter based on extremely compact design is proposed. The proposed device exhibits a local pass-band behavior for application in the C-band. Despite the fact that the actual pass-band behavior is limited in the C-band, the proposed filter is still competitive, being extremely compact if compared to filters with similar behavior.

The resultant device occupies an area of $3.0 \times 4.5 \, \text{cm}^2$, meaning $0.525\lambda_0^2$ at the central frequency of 5.85 GHz. The experimental validations confirm that the performance of the proposed filter, with an insertion loss of -1.8 at center frequency as well as a rejection of about -18.

References

